

1 Mean = 6

Standard Deviation = 1.0954

∠ S numbers belong to the interval.

(3)
$$X = \# of hits; n = 4; p = 0.42; Binomial$$

$$P(x \geqslant 2) = 1 - \left[P(x=0) + P(x=1)\right]$$

Wednesday, May 2, 2018 12:44 PM

$$P(X = 0) = C(4, 0) \cdot (0.42) \cdot (0.58)$$

$$\approx 0.4131$$

$$P(X = 1) = C(4, 1) \cdot (0.42) \cdot (0.58)$$

$$\approx 0.3278$$

$$P(X \geqslant 2) = 1 - [0.1131 + 0.3278]$$

$$\approx 0.5591$$

$$4) 3 - Acare of 134.9 = \frac{134.9 - 120}{5} \approx 2.98$$

$$P(X > 8,900) = 0.5 - 0.4713 \approx 0.0287$$

$$P(7000 < X < 8300)$$

$$=\frac{468}{117}$$

Wednesday, May 2, 2018 \$4998.586

Final Review Page 4

~\$ 840. L18

(11	Wednesday, May 2, 2018	1:12 PM	$(x_i - \mu)^2$
	54.5	8	361
	64.5	7	87
	74.5	12	4
	84.5	7	121
	94.5	6	441
	_	_	•

Mean =
$$\frac{\sum x_i \cdot f_i}{n} = 73.5$$
Vaniance =
$$\frac{\sum (x_i - \mu)^2 \cdot f_i}{n} = 174$$

Sample S.D.
$$\Longrightarrow \sqrt{\frac{\sum (x_i - \mu)^2 \cdot f_i}{n - 1}} \approx 13.36$$

Sample S.D.

(12) Binomial Distribution. n = 10; p = 0.33.

$$P(x \le 6) = 1 - [P(x = 7) + P(x = 8) + P(x = 9) + P(x = 9)]$$

$$P(X=7) = C(40,7) \cdot (0.33) \cdot (0.67)^{3}$$

$$P(X=8) = C(40,8) \cdot (0.33)^{8} \cdot (0.67)^{2}$$

$$P(X=9) = C(40,9) \cdot (0.33)^{9} \cdot (0.67)^{4}$$

$$P(X=10) = C(40,10) \cdot (0.33)^{40} \cdot (0.67)^{6}$$

$$P(X=6) \approx 0.9815$$

$$P(X=6) \approx 0.9815$$

$$P(X=7.35)$$

$$P(X=7.35)$$

$$P(X=7.35)$$

$$P(X=7.35)$$

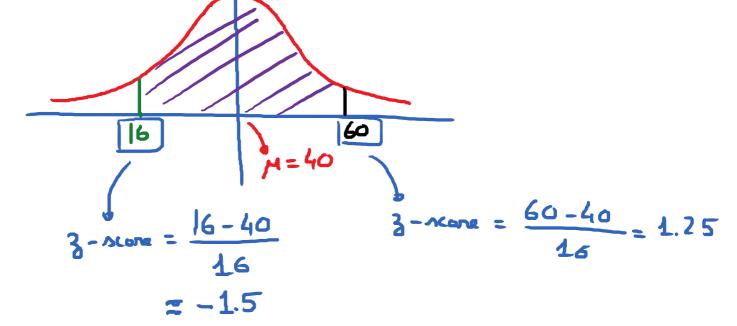
= normal colf (-1,0) = 0.3413

Wednesday, May 2, 2018

Mode = 2

(15) Binomiel,
$$n=6$$
; $p=0.42$; $q=0.58$
(a) $p(x) = C(6,x) \cdot (0.42)^{x} \cdot (0.58)$

(b)
$$P(x \ge 3) = 1 - [P(x=0) + P(x=1) + P(x=2)]$$


$$P(X=0) = C(6,0) \cdot (0.42)^{6} \cdot (0.58)^{6}$$

$$P(X=1) = C(6,1)(0.42)^{1} \cdot (0.58)^{5}$$

$$P(X=2) = C(6,2)(6.42)^{2} \cdot (0.58)^{4}$$

$$P(X=3) \approx 0.497$$

18	Rain	Does not Rain
prob	0.34	0.66
profit	180,000	270,000
E	Expected Pro	$fit = (80,000) \cdot (0.34) + (270,000) (0.66)$ $\approx (239,400)$

(19) First 4 years:

$$FV = PMT \left(\frac{(1+i)^{n}-1}{i} \right)$$

$$t = \frac{1}{2} \left(\frac{(1+0.06)^{16}-1}{i} \right)$$

$$= \$ 100 \cdot \left(\frac{\left(1 + \frac{0.66}{4}\right)^{16} - 1}{\frac{0.06}{4}} \right)$$

= \$1793.24 last 1 year A = P

$$A = P(1+i)$$

$$A = (1793.24) \cdot \left(1 + \frac{0.075}{2}\right)$$