

Monday, January 22, 2018 8:34 AM

Slope of the recent line through
$$(1, 1)$$
 and
 $(2, 4): \frac{4-1}{2-1} = \frac{3}{1} = 3$
 $x = x^2$ More (recent line through $(1, 1)$
 $x = x^2$ More (recent line through $(1, 1)$
 $x = x^2$ More (recent line through $(1, 1)$
 $x = x^2$ More (recent line through $(1, 1)$
 $1.5 = 2.25$
 $1.5 = 1$
 $1.01 = 1.0201$
 $\frac{1.0201}{1.0201 - 1} = 2.01$
(We let x get close to 1 from the night)
 $\frac{x}{2}$ More (recent line the light)
 $\frac{x}{2}$ More (recent line through $\frac{0.9801 - 1}{0.93 - 1} = 1.39$
(We let x get close to 1 from the left)

Monday, January 22, 2018 854 M

$$\frac{x \left(\frac{y}{2} \right) \left(\frac{h_{ape}}{h_{ec}} \right) \frac{h_{ecant}}{(1, 1) \text{ and } (h, h^2)} \\
\frac{b}{b} \left(\frac{b^2}{b} - \frac{1}{b - 1} \right) = m_{hec} \\
\frac{a}{b} - \frac{1}{b - 1} = m_{hec} \\
\frac{b^2 - 1}{b - 1} \\
\frac{b^2 - 1}{b - 1} \\
\frac{b}{b} - \frac{1}{b} \\
\frac{b}{b} \\
\frac$$

Monday, January 22, 2018 9:01 AM
To express the question what does
$$\frac{b^2 - 1}{b - 1}$$
 get close to
when b gets close to 1 from the right, we use:
 $lim_{b \to 1} + \frac{b^2 - 1}{b - 1}$
& from the left $lim_{b \to 1} - \frac{b^2 - 1}{b - 1}$
& Alagebraic explanation of why make approaches 2
(difference between represent)
 $\frac{b^2 - 1}{b - 1} = (b+1)(b-1) = b+1$
 $b + 1$ if $b \neq 1$
 $\frac{b^2 - 1}{b - 1} = 0$
 $b + 1$ if $b \neq 1$

