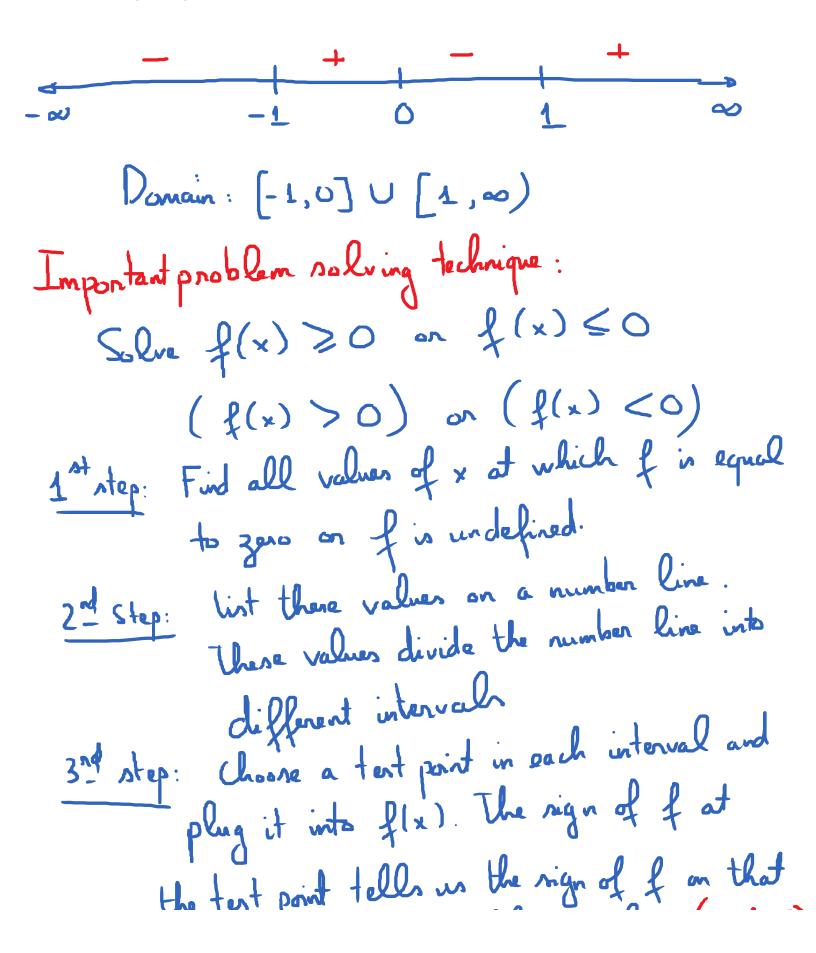
Monday, January 29, 2018 9:07 AM

E.g.
$$f(x) = 3x^2 + x + 1$$
.
Verify that f is continuous on $(-\infty, \infty)$
This is a polynomial function. The Domain is
 $(-\infty, \infty)$. Hence, by Theorem above, f is
continuous at every point in this domain.
E.g. $g(x) = \frac{x^2 - 1}{x - 1} \cdot \frac{Domain :}{(-\infty, 1) \cup (1, \infty)}$
By Theorem above, g is continuous at every point
in the interval $(-\infty, 1) \cup (1, \infty)$
* Interval of continuity = Domain
 $f_{unction}$
(a) $f(x) = \frac{5}{e^x - 2}$.
(b) $g(x) = \frac{2}{x^2 + 5}$

Monday, January 29, 2018 9:21 AM

(1) Find Domain: ex-2 = O e[×] = 2 lnex = ln2 $\times = ln2$ Domain: (-as, ln2) U(ln2, as) De Interval of Continuity. (2) Poincine of $g(x) = \frac{2}{x^2+5}$ is $(-\infty, \infty)_{ex}$ 3 Smlf Requirement: Shuff > O To find domain q'our function: $\overline{x^3} - x \ge 0$. $x^{3}-x=0$; $x(x^{2}-1)=0$ x(x-1)(x+1)=0x=0, x=1, x=-L

Monday, January 29, 2018 9:39 AM



whole interval. (Why?)

Theorem (Intermediate Value Theorem) f: function fis continuous on an interval [a,b] 3: any number in between f(a) and f(b)such that f(a) < g < f(b)Conclusion: There exists a number c in [a, b] such that f(c) = z. よ(7)=と 3 = 6 f(4)=3 C a=4 0 X f is continuous on [a,b] and f(a) <0 Special case: if and £(b)>0 exists a number c in (a, b) such Conclusion. there there

Monday, January 29, 2018 10:07 AM that f(c) = O. Eq. $f(x) = x^3 - x^2 - 3x + 1$. f is cartinuous f(0) = 1; f(1) = -2f(0) > 0; f(L) < 0there will be a number c in (0,1) such that f(c) = 0L Buch to the question.

