3.1. The Definition of the Derivative
Back to the tangent line problem

$$3p$$

 $4p$
 $4p$

$$A^{2}-B^{2}=(A-B)(A+B)(A+B)(A^{3}-B^{3}=(A-B)(A^{2}+AB+B^{2}$$

$$\frac{x^{3}}{x} = x^{2}$$

$$\frac{x^{2} + 2x + 4}{x^{2} + 2x + 4}$$

$$\frac{x^{2} + 2x + 4}{x^{2} + 2x + 4}$$

$$\frac{2x^{2}}{x} = 2x$$

$$-(x^{3} - 2x^{2})$$

$$\frac{4x}{x} = 4$$

$$-(2x^{2} - 4x)$$

$$\frac{4x}{x} = 4$$

$$-(2x^{2} - 4x)$$

$$\frac{4x}{x} = 4$$

$$\frac{2x^{2}}{x} = 4$$

$$\frac{4x}{x} = 4$$

$$\frac{2x^{2} - 4x}{x} = 4$$

An important variation of the formula for m ton Wednesday, January 31, 2018 Slope of the secont line through (a, f(a)) tongent line flath (a+h, f(a+h))\$(a) $m_{sec} = \frac{f(a+b) - f(a)}{a+b - a} = \frac{f(a+b) - f(a)}{b}$ So, $m_{tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ In Summary, the slope of the tangent line to the graph of y = f(x) at the point (a, f(a)) can be calculated $= \lim_{X \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

3.1 and 3.2 Page 4

by:

$$m_{tan} = \lim_{X \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to o} \frac{f(a+h) - f(a)}{h}$$

Wednesday, January 32, 2028
Definition: The derivative of a function
$$y = f(x)$$

at the paint $x = a$; denoted by $f'(a)$
(read on f prime of a) on $\frac{dy}{dx} \Big|_{x=a}$
(leibnitz notation)
is defined as:
 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to o} \frac{f(a+h) - f(a)}{h}$
Provided that the limit
Note: If $f(x)$ is the perition function of a moving
object at time x , then $f'(a) =$ instantance our
velocity at time $x = a$.
If $f(x)$ is a cast function, then
 $f'(a) =$ acceleration at time $y = a$.
If $f(x)$ is a cast function, then
 $f'(a) =$ monginal cast at production leavel
 $x = a$