Derivatives of Inverse Trig Functions Wednesday, February 14, 2018 & 8:18 AM

Recall:

$$arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
 (Range of $y = arcsin(x)$)

 $arcsin\left(\frac{1}{2}\right) = \frac{\pi}{2}$
 $arcsin\left(\frac{1}{2}\right) = \frac{\pi}{2}$
 $arcsin\left(\frac{1}{2}\right) = \frac{3\pi}{4}$ (Range of $y = arccon(x)$)

 $arctan\left(\frac{13}{3}\right) = \frac{\pi}{6}$ (Range of $y = arcton(x)$)

 $arctan\left(\frac{13}{3}\right) = \frac{\pi}{6}$ (Range of $y = arcton(x)$)

 $arcsin(x)$ gives un an angle y in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 $arcsin(x)$ gives un an angle y in $\left[0, \pi\right]$
 $arctan(x)$ gives un an argle y in $\left[0, \pi\right]$
 $arctan(x)$ gives un an argle y in $\left[0, \pi\right]$
 $arctan(x)$ gives un an argle y in $\left[0, \pi\right]$

anctain (x) gives us an angle y in
$$\left(-\frac{\Gamma}{2}, \frac{\Gamma}{2}\right)$$

much that $\tan(y) = x$

In general, if y = f(x) is a function, then the inverse function of f, denoted by, f^{-1} (not equal to $\frac{1}{f}$) in the function

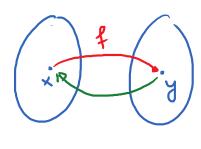
$$\begin{cases} y = x^2 \\ y = x^2 \end{cases}$$

$$\begin{cases} y = \sqrt{x} \\ y = \sqrt{x} \end{cases}$$

that undoes what I does.

$$f^{-1}(f(x)) = x$$

$$f(f^{-1}(x)) = x$$



Invense Function Theorem:

Let f be a function that is invertible and differentiable on an interval containing or

$$\frac{d}{d} \left(\xi_{-r}(x) \right) = \frac{\xi_{r}(\xi_{-r}(x))}{1}$$

provided that f'(f.r(x)) = 0

E.g.
$$f(x) = x^5 + 3x^3 - 4x - 8$$
.

$$f(1) = -8$$
; $f^{-1}(-8) = 1$.

No "nia" formula

for
$$y = f^{-1}(x)$$

No "nice" formula

1 1 -8

for $y = f^{-1}(x)$.

A: Find the equation of the tangent line to the graph of $y = f^{-1}(x)$ at (-8, 1)

Slope of tengent line at (-8,1)

$$= \left(-\frac{1}{4} \right) \left(-8 \right)$$

By the I.F.T. :

$$(t_{-1}), (-8) = \frac{t, (t_{-1}(-8))}{1}$$

$$=\frac{1}{\xi'(1)}$$

$$f'(x) = 5x^4 + 9x^2 - 4 \rightarrow f'(1) = 10$$
.

Hence,
$$(f^{-1})'(-8) = \frac{1}{10}$$
 Slope.

Point-Slope Equation:

$$y - 1 = \frac{1}{10}(x+8)$$

$$y = \frac{1}{10} \times + \frac{9}{5}$$

Wednesday, February 14, 2018

Why is the I.F.T. true?

$$\left(f_{-1}\right)(x) = \frac{f_{1}\left(f_{-1}(x)\right)}{1}$$

 $f(f^{-1}(x)) = x$

Take the derivative w.r.t x of both sides

$$\{\xi'(\xi^{-1}(x))\}$$
 $\{\xi^{-1}\}'(x) = 1$

$$\left(f^{-L}\right)'(x) = \frac{1}{f'(f^{-L}(x))}$$

 E_{q} . $f(x) = x^3 + 2x + 3$.

Find (2-2)' (0) =

$$f(0) = 3$$

$$f^{-1}(3) = 0$$

$$f(-1) = 0$$

$$f^{-1}(0) = -1$$

$$(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}$$

$$f'(x) = 3x^2 + 2$$

Derivatives of Inverse Trig Functions.

In the equation for the IFT:

$$\left(f_{-1}(x)\right)_{,}=\frac{f_{,}\left(f_{-1}(x)\right)}{T}$$

If rename $f^{-1}(x)$ as g(x), the equation

be comen:
$$g'(x) = \frac{1}{f'(g(x))}$$

(f and g are inverse functions of each other)