

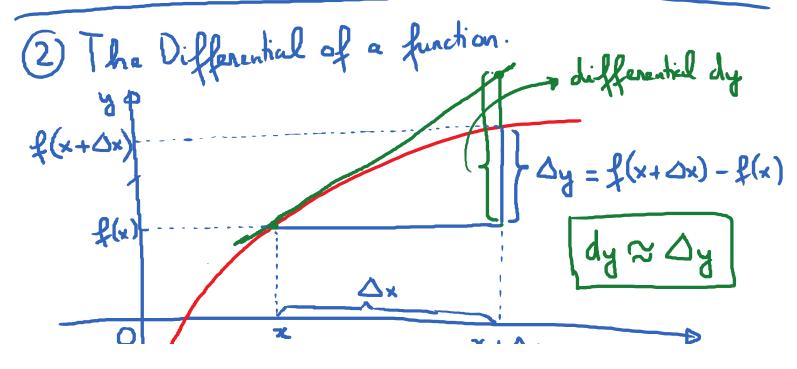
Wednesdy, February 28, 2018 8:35 M
The equation
$$y = L(x)$$
 is the equation of the tangent line
to the graph of $y = f(x)$ at $(a, f(a))$.
 \rightarrow Formula for the linear approximation $y = L(x)$:
 $Slope of tangent line = f'(a)$
 $Point of tangency = (a, f(a))$
 $Point - Slope equation of tangent line:
 $y - f(a) = f'(a)(x - a) + f(a)$
 $\rightarrow y = f'(a)(x - a) + f(a)$
 $L(x) = f(a) + f'(a)(x - a)$
 $formula for the linear approximation to $y = f(x)$
 $at (a, f(a))$.$$

Wednesday, February 28, 2018 8:40 AM
E.g. * let
$$f(x) = \sqrt{x}$$

(a) Find the linear appreximation to the graph of
f at $a = 9$.
(b) Use the linear approximation L(x) to estimate
 $\sqrt{9.1}$.
(c) * Use linear approximation to approximate $\sqrt{100.1}$
(c) * Use $f(9) + f'(9)(x-9)$
 $f(9) = 3$; $f'(x) = \frac{1}{2\sqrt{x}}$; $f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{6}$.
 $L(x) = 3 + \frac{1}{6}(x-9)$
(b) Approximate $\sqrt{9.1}$
 $\sqrt{9.1} \approx L(9.1) = 3 + \frac{1}{6}(9.1-9)$

$$= 3 + \frac{0.1}{6} = 3.0167$$

Wednesday, February 28, 2018 9.02 AM
(2)
$$f(x) = \sqrt[3]{x}$$
; $a = 1000$.
 $L(x) = f(1000) + f^{3}(1000)(x - 1000)$
 $f(1000) = 10$; $f^{3}(x) = \frac{1}{3} \cdot x^{-2/3} = \frac{1}{3\sqrt[3]{x^{2}}}$
 $f^{3}(1000) = \frac{1}{3\sqrt[3]{1000}} = \frac{1}{3\sqrt[3]{1000}} = \frac{1}{300}$.
 $L(x) = 10 + \frac{1}{300} \cdot (x - 1000)$
 $\sqrt{1004} \approx 10 + \frac{1}{300} \cdot (1001 - 1000)$
 $10 + \frac{1}{300} = \frac{3004}{300} \approx \dots$



4.2-Linear Approximations and Differentials Page 4

Wednesday, February 28, 2018 9:27 AM

Change in y value on x changes to
$$x + \Delta x$$
:
 $\Delta y = f(x + \Delta x) - f(x)$.
Want to entimate Δy by dy.
Set $dx = \Delta x$ (riste. $dy \neq \Delta y$ but $dx = \Delta x$)
From picture: $\frac{Rise}{Run} = \frac{dy}{dx} = nlope of tangent line at x
 $= f'(x)$
So, $dy = f'(x) dx$
dy is called the differential of the function and
it can be used to approximate Δy , the actual
Change of the function.
E.x. $y = f(x) = x^3 + x^2 - 2x + 1$.
Find Δy and find dy as x changes from 2 to
2.05.$

Wednesday, February 28, 2018 9:35 AM

$$\begin{split} Oy &= f(x+Ox) - f(x) \\ &= -f(2.05) - f(2) = [0.71763] \\ dy &= f'(x) dx = f'(2) \cdot (0.05) = 14 \cdot (0.05) \\ &= [0.7] \\ f'(x) &= 3x^2 + 2x - 2 = - f'(2) = 14 \\ \hline E.g. Suppose the ride length of a cube in measured to be 5 cm with an error at most 0.1 cm. (x = 5 cm; |dx| $\leq 0.1 (cm)$) When the measurement to calculate volume.
 $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ Where the measurement to calculate volume.
 $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ Where the measurement to calculate volume.
 $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ Where the measurement to calculate volume.
 $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ where the measurement to calculate volume.
 $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| \leq 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm))$ $O(1 \text{ cm} \cdot (x = 5 \text{ cm}; |dx| = 0.1 (cm)))$ $O(1 \text{ cm} \cdot$$$