5.4. Comparison Tests and Limit Comparison Tests Tuesday, March 20, 2018 1:52 PM

Direct Comparison Test.

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with

positive terms.

If $0 \le a_n \le b_n$ for all $n \ge N$, then:

1) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(2) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

E.g. Comiden $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$

Does this series converge on diverge?

Idea: Compare with $\sum_{n=1}^{\infty} \frac{1}{n^2}$ b/c it is a p-Minus with p=2>1.

 $a_n = \frac{1}{n^2 + 1}$ and $b_n = \frac{1}{n^2}$. In $a_n \leq b_n$

for all n?

Tuesday, March 20, 2018 2:13 PI

$$\frac{1}{n^2+1} \stackrel{?}{\leq} \frac{1}{n^2} \text{ for all } n \geq 1 \longrightarrow True$$

So,
$$\frac{\infty}{n=1}$$
 $\frac{1}{n^2+1}$ $\leq \frac{1}{n}$ Convergen

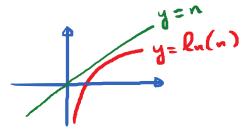
Conclusion:
$$\frac{2n}{n^2+1}$$
 must converge.

Ex. Determine whether the given series converges on

diverges by using the direct comparison test.

$$1) \sum_{n=1}^{\infty} \frac{1}{n^3 + 3n + 1}$$

$$\frac{3}{2} = \frac{1}{\ln(n)}$$



Sol. (1) Compare it with
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
.

$$\sum_{n=1}^{\infty} \frac{1}{n^3} \text{ converges blc it is a } p-\text{ series with } \\ p=3>1.$$

$$n^3+3n+1 > n^3$$
 for all $n \ge 1$

So,
$$\frac{1}{n^3+3n+1}$$
 $<\frac{1}{n^3}$ for all $n \geqslant 1$.

So,
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n + 1} < \sum_{n=1}^{\infty} \frac{1}{n^3}$$

So,
$$\sum_{n=1}^{\infty} \frac{1}{n^3+3n+1}$$
 converges b/c it is "smaller"

than a convergent series.

(2) Compane with
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
.

We know
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \cdots$$

$$\times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

It is a geometric series with common ratio = $\frac{1}{2} < 1$.

So,
$$\frac{20}{n=1}$$
 $\frac{1}{2^n}$ converges.

$$2^{n}+1 \rightarrow 2^{n}$$
 for all $n \ge 1$.

$$So, \frac{1}{2^n+1} < \frac{1}{2^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^{n}+1} < \sum_{n=1}^{\infty} \frac{1}{2^{n}}$$

So,
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$
 converges.

(3)
$$l_n(n) < n$$
 for all $n \ge 2$.

$$\frac{1}{\ell_n(n)} > \frac{1}{n} \cdot \sum_{n=2}^{\infty} \frac{1}{\ell_n(n)}$$

Tuesday, March 20, 2018

Tuesday, March 20, 2018 2:36 PM

So,
$$\frac{1}{n=2} \frac{1}{\ln(n)}$$
 diverges because it is "larger"

than a divergent series.

Limit Companison Test

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are

series with positive terms.

Limit companison test says that:

If lim an = L where L is a finite

and positive number; i.e., L>0.

then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ will behave in

the same way.

In other words, if one converges, so does the other. If one diverges, so does the other.

E.g.
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{n^5 + 5}}$$

Scratch work: when n is large, the series

behaves like:
$$\sum_{n=1}^{\infty} \frac{2n^2}{\sqrt{n^5}} = \sum_{n=1}^{\infty} \frac{2n^2}{n^{5/2}} = \sum_{n=1}^{\infty} \frac{2}{n^{1/2}}$$
 diverges

But we can't (it is hard!)
compare the two. ______ S

$$\lim_{N\to\infty} \frac{2n^2+3n}{\sqrt{n^5+5}} = \lim_{N\to\infty} \frac{2n^2+3n}{\sqrt{n^5+5}} \cdot \frac{\sqrt{n}}{2}$$

$$\lim_{n\to\infty} \frac{(2n^2+3n)\sqrt{n}}{2\sqrt{n^5+5}} = 1$$

So,
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{n^5 + 5}}$$
 behaves exactly like

$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}$$
 by the limit companison test

Since
$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}$$
 diverges b/c it is a p -series with $p = 1/2$.

The original series must diverge. Ex. Determine whether the series converges or

1)
$$\frac{1}{n+2n^2-1}$$
 (2) $\frac{\infty}{n+2n^2-1}$ $\frac{1}{n+2n^2-1}$ (2) $\frac{1}{n+2n^2-1}$ $\frac{1}{n+2n^2-1}$

Limit comparing with (

