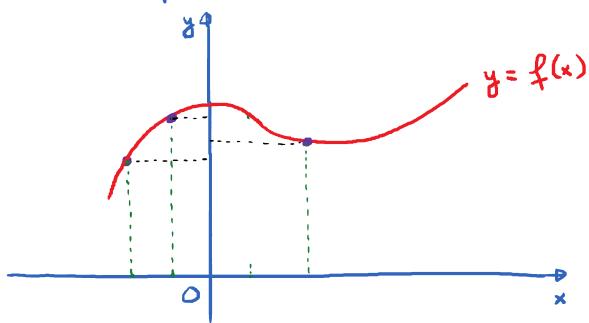
7.1 and 7.2. Parametric Curves and Calculus of Tuesday, April 17, 2018 1:03 PM Parametric Curves

What is a parametric curve?



x and y coordinates of a point moving along this curve change with respect to time.

Introduce the voniable to for time

___ Both x and y are functions of t

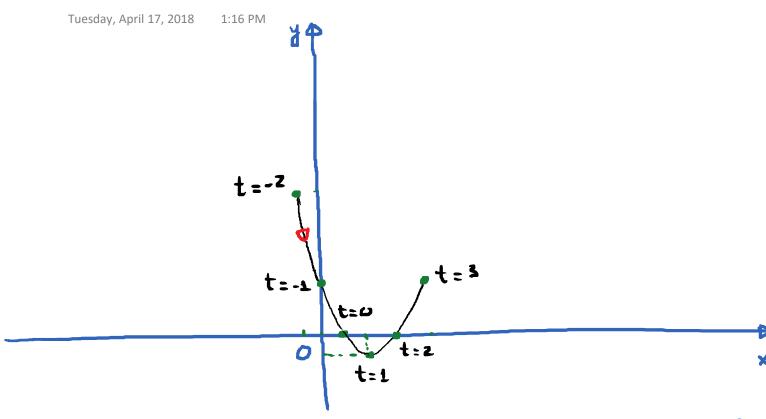
$$\begin{cases} x = x(t) \text{ | There 2 equations are called} \\ y = y(t) \text{ | parametric equations for the } \\ \text{ curve } y = f(x). \end{cases}$$

E.g.
$$\{x = x(t) = t + 1 \}$$

 $\{y = y(t) = t^2 - 2t\}$

- parametric equations for a parametric curve in the xy-plane. (t is called the parameter)

	the xy - p	Kane. (L		
t	x = t + L	y = t2 - 2t	point on come	
- 2	-L	8	(-1,8) / at time t = -?	
-1	0	3	(0,3) pt on curve at time t=-1	
0	1	0	(1,0)	
1	2	-1	(2, -1)	
2	2		(5)	



To know the shape of the graph, in many cases, it is useful to have an equation of y in terms of x, rather than 2 equations of x and y in terms of t.

____ Elimination of parameter.

$$\begin{cases} x = x(t) = t + L \\ y = y(t) = t^2 - 2t \end{cases}$$

Want: Eliminate t and get an equation that relater x and y.

Idea: Solve for t in one of the equation

— t in terms of x (or y)

Then play it back to the other equation.

$$\begin{cases} x = t + 1 \\ y = t^2 - 2t \end{cases}$$

$$y = x^{2} - 2x + 1 - 2x + 2$$

$$y = x^{2} - 4x + 3$$

So me lenon that the curve is a parabola.

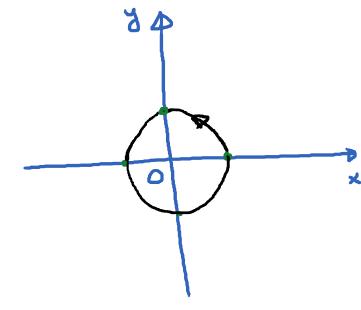
Since a = 1 >0, parabola points up ward.

Vertex:
$$x$$
-vertex = $-\frac{L}{2a}$ = $\frac{4}{2}$ = 2

$$y - ventex = (2)^2 - 4(2) + 3 = -1$$

Q: What curve is this?

ŧ	x	B	(4,4)
0	1	0	(1,0)
<u>π</u> 2	0	1	(0,1)
π	- 1	۵	(-1,0)
$\frac{3\pi}{2}$	0	-1	(0,-1)
2π	1	0	(1,0)



Elimination of parameter:

$$x^2 + y^2 = \cos^2 t + \sin^2 t = 1$$

So,
$$x^2 + y^2 = 1$$
 — this curve in the unit circle.

Calculus of Panametric Curves

Tangent line Problem:

If curve is given as y = f(x), to find the tangent line to the curve at (a,b), we first find f'(x).

Then Slope of tangent line = f'(a).

Equation of tangent line: y - b = f'(a)(x - a)

Mow, the curve is given as:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

Q: How do we find the slope of the tangent line at a point on the curve?

E.g. Given the parametric curve:

$$\begin{cases} x = x(t) = t^2 - 4t \\ y = y(t) = 2t^3 - 6t \end{cases}; -2 \le t \le 3.$$

Find the equation of the tangent line to the graph of this curve at the point where t=1.

When t = 1 : x = -3 ; y = -4

_____ point (-3,-4).

Need: Slope =?

Slope =
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)} = \frac{6t^2 - 6}{2t - 4}$$

Slope at
$$(-3,-4) = \frac{6 \cdot (1)^2 - 6}{2 \cdot (1) - 4} = \frac{0}{-2} = 0$$

Equation of transport line at
$$(-3,-4)$$
: $y = -4$