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1. Bézier Curves

Bézier curves are fundamental in many computer graphics programs such as Adobe Illustrator, Corel
Draw and Inkscape. The mathematics behind the beautifully designed Chords bridge in Jerusalem (see
Figure 1) also involves Bézier curve.

Figure 1. Chords Bridge

Figure 2 below shows three Bézier curves. A quadratic curve and two cubic curves. A quadratic Bézier
curve is determined by three control points P0, P1 and P2. The curve starts at P0, ends at P2 and its
tangent lines at P0 and P2 intersect at the point P1.

Figure 2. Quadratic and Cubic Bézier Curves

A cubic Bézier curve is determined by four control points P0, P1, P2 and P3. The cubic curve starts at
P0, ends at P3. When it leaves P0, it is heading towards P1 and when it arrives at P3, it is coming from
the direction of P2. In this project, we will study some basic Bézier curves and their properties.

First we recall some material from Precalculus.
Suppose that t is a variable taking values from an interval I. Let x and y be both given as functions of

t (called a parameter) by the equations x = x(t), y = y(t) (called parametric equations). Each value of t
determine a point (x(t), y(t)) in the coordinate plane. As t varies, the point (x(t), y(t)) varies and traces
out a plane curve, called a parametric curve. For example,

Question 1. What curve is represented by the following parametric equations? Explain your reasoning.

x = cos(t), y = sin(t), 0 ≤ t ≤ 2π.

Question 2. Let P0 = (x0, y0) and P1 = (x1, y1) be two points in the plane such that the line passing
through P0 and P1 is not vertical. Show that the parametric equations for the (directed) line segment from
P0 to P1 are

x = x0 + t(x1 − x0) and y = y0 + t(y1 − y0) where 0 ≤ t ≤ 1.
1
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(Hint: to get an idea of how to prove this, think about a special example. Suppose that P0 is the origin
(0, 0) and P1 = (2, 3). Then the above statement says that the parametric equations x = 2t, y = 3t,
0 ≤ t ≤ 1 will parameterize the line segments from the origin to (2, 3). Is this true? If we choose an
arbitrary number t in the interval [0, 1] and plug it into the equations for x and y, does that point (x, y)
belong to the line segment? Conversely, if you pick some random point (x, y) on that line segment, can
you find t such that x = 2t and y = 3t. After you think through this special case, see if you can turn your
idea into a proof of the general statement.)

Before we move on, let’s agree on some conventions so that the notations in what follows will not get
too cumbersome. From now on, if I have a point P = (x, y) and a number t, the notation tP means the
point whose coordinates is (tx, ty) and I shall write tP = (tx, ty). If I have two points P0 = (x0, y0) and
P1 = (x1, y1), I shall use the notation P0 ± P1 to denote the points with coordinates (x0 ± x1, y0 ± y1) and
I shall write P0 ± P1 = (x0 ± x1, y0 ± y1).

Using these conventions, the two equations in Question 2 above can be combined into a single equation

(x, y) = (x0, y0) + t(x1 − x0, y1 − y0).

Better still, the above equation can be written in a more compact form as

P = P0 + tP1

where P is a point with coordinates (x, y).
Now, we get to the fun part. We will derive the formula for the quadratic Bézier curve determined by

three points P0, P1 and P2 from scratch.
The idea is to generate points on the curve using a divide and conquer method. We start by choosing a

number t, 0 ≤ t ≤ 1 (t = .25 in figure 3). Let Q0 be the point on the directed line segment P0P1 and Q1

be the point on the directed line segment P1P2 defined by

(1) Q0 = P0 + t(P1 − P0) and Q1 = P1 + t(P2 − P1)

Let B be the point on the directed line segment Q0Q1 defined by

(2) B = Q0 + t(Q1 −Q0)

See figure 3.

Figure 3. Points on Quadratic Bézier Curves

Then we let t vary, say t = .26, .27, .28, etc. When t varies, the points Q0 and Q1 will vary. As a result,
B will vary and it will trace our a path which is the Bézier curve with the properties that we want.

Go to the link https://i.stack.imgur.com/I6MjU.gif to see an animation of the process.
We shall derive the set of parametric equations for the coordinates of the points B on the Bézier curve.
Question 3. Substitute the formula for Q0 and Q1 from equation 1 into the right hand side of equation

2 and simplify to show that

(3) B = (1 − t)2P0 + 2t(1 − t)P1 + t2P2.

Let’s pause for a moment and try to see what equation 3 is saying. Equation 3 tells us how to generate
the x and the y coordinates of any point B on the Bézier curve. In fact, suppose that P0 = (x0, y0),

https://i.stack.imgur.com/I6MjU.gif
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P1 = (x1, y1), and P2 = (x2, y2), then equation 3 says that the x and the y coordinates of any point B on
the Bézier curve are given by the pair of parametric equations

x = (1 − t)2x0 + 2t(1 − t)x1 + t2x2 and y = (1 − t)2y0 + 2t(1 − t)y1 + t2y2 where 0 ≤ t ≤ 1.

Of course, the computer programs do not use the parametric equations to generate the points, they use
the divide and conquer method described above. But for the purpose of understanding the properties of
Bézier curves, it is very useful to obtain these equations.

Question 4. Choose three specific points P0, P1 and P2 that you like. Use equation 3 to find the
parametric equations for the Bézier curve defined by your three points, that is, find explicitly the equation
for the coordinate x and that for the coordinate y of an arbitrary point on a curve. Plot a couple of points
on the curve by choosing several values of t in [0, 1] and connect them to provide a rough sketch of your
quadratic Bézier curve.

We’d better make sure that the formula for the curve in equation 3 actually defines a curve with the
“nice” property described at the beginning of this section.

Question 5. Use the specific points you chose for Question 4 to prove the following about your Bèzier
curve.

(1) When t = 0, the curve starts at P0. When t = 1, the curve ends at P2.
(2) Both of the tangent lines to the curve at P0 and at P2 pass through the point P1.

Hint: we need to be careful with part (2). The slope of the tangent line to the curve, say at P0, is dy
dx

at
x = x0. However, the issue here is that the curve is not described by a function y = f(x). Both x and y
are functions of t. It turns out that we have

dy

dx

∣∣∣
x=x0

=
dy
dt
dx
dt

∣∣∣
t=0
.

So the slope at P0 can be found by evaluating y′(0)
x′(0)

. Similarly, you can find the slope at P1.

A similar process can be used to obtain a formula for the cubic Bézier curve determined by four control
points P0, P1, P2 and P3 (See figure 4 for a particular instance of the process and see the link https://

upload.wikimedia.org/wikipedia/commons/d/db/B%C3%A9zier_3_big.gif?1485969558963 for an an-
imation of the whole process ).

Figure 4. Cubic Bézier Curves

We will not go through this process here but the formula for the coordinates of the points B on the
cubic curve is given by

(4) B = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

Question 6. Choose four specific points P0, P1, P2 and P3 that you like. Use equation 4 to find the
parametric equations for the Bézier curve defined by your four points, that is, find explicitly the equation
for the coordinate x and that for the coordinate y of an arbitrary point on a curve. Plot a couple of points
on the curve by choosing several values of t in [0, 1] and connect them to provide a rough sketch of your
cubic Bézier curve.

https://upload.wikimedia.org/wikipedia/commons/d/db/B%C3%A9zier_3_big.gif?1485969558963
https://upload.wikimedia.org/wikipedia/commons/d/db/B%C3%A9zier_3_big.gif?1485969558963
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Question 7. Use the specific points you chose for Question 6 to prove the following about your cubic
Bèzier curve.

(1) When t = 0, the curve starts at P0. When t = 1, the curve ends at P3.
(2) The tangent line to the curve at P0 passes through P1 and the tangent line to the curve at P3 passes

through P2.

What about a Bézier curve of degree 4, degree 5, etc.? What do the formulas for the coordinates
points on those curves look like? See the link https://upload.wikimedia.org/wikipedia/commons/0/

0b/BezierCurve.gif?1485969726446 for the birth of a curve of fifth degree, a quintic Bézier curve.
We will make some useful observation here. Recall the binomial expansion for powers of (a+ b)

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

Now, if you apply these expansions when a = 1 − t and b = t, you will get

1 = [(1 − t) + t]2 = (1 − t)2 + 2t(1 − t) + t2

1 = [(1 − t) + t]3 = (1 − t)3 + 3t(1 − t)2 + 3t2(1 − t) + t3

Notice the similarity between this pattern and the pattern of the formula for the points on the quadratic
and cubic Bézier curves in equation 3 and equation 4.

Question 8. From the observation above, write down the formula for the coordinates of the points
on the quartic Bézier curve determined by 5 control points P0, . . . , P4. Write down the formula for the
coordinates of the points on the quintic Bézier curve determined by 6 control points P0, . . . , P5. In general,
what is the formula for the nth-degree Bézier curve determine by n control points P0, . . . , Pn?

You do not need to prove any of these formulas. However, it would be nice if you write a short paragraph
describe what strategy you would use if you are to prove them.

2. Polynomial Approximation of Functions

Polynomial functions are among the simplest types of functions in mathematics. Yet, they can be used to
approximate many complicated non-linear functions. In this section, we will study such an approximation.
The polynomials that we will use to approximate various functions actually come from the formulas for
the Bézier curves in the previous section.

First, note that the binomial expansion

1 = [t+ (1 − t)]n =
n∑

k=0

(
n

k

)
tk(1 − t)n−k

seems to play an important role in the formulas for Bézier curves. However, note that the polynomial on
the right hand side is always 1 for every n, so we are going to twist it a little bit to make it more useful.

Let f be an arbitrary function which is defined and bounded on the interval [0, 1]. Let n ≥ 1 be an
arbitrary positive integer. We define Bn(f) to be the following expression

(5) Bn(f) =
n∑

k=0

(
n

k

)
tk(1 − t)n−kf

(
k

n

)
.

This looks like a complicated expression. Let’s play with it a little bit.

Question 9. Suppose that f is the function f(x) = x. Then f

(
k

n

)
=
k

n
and equation 5 becomes

Bn(f) =
n∑

k=0

(
n

k

)
k

n
tk(1 − t)n−k.

Use the above formula to show that B1(f) = B2(f) = B3(f) = t. Make a conjecture about the formula for
Bn(f). Can you prove your conjecture?

https://upload.wikimedia.org/wikipedia/commons/0/0b/BezierCurve.gif?1485969726446
https://upload.wikimedia.org/wikipedia/commons/0/0b/BezierCurve.gif?1485969726446
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Question 10. Suppose that f is the function f(x) = x2. Then f

(
k

n

)
=

(
k

n

)2

=
k2

n2
and equation 5

becomes

Bn(f) =
n∑

k=0

(
n

k

)
k2

n2
tk(1 − t)n−k.

Use the above formula to show that B1(f) = t, B2(f) = t2

2
+ t

2
, B3(f) = 2t2

3
+ t

3
, B4(f) = 3t2

4
+ t

4
. Make a

conjecture about the formula for Bn(f). Can you prove your conjecture?
Now, what is the use of these polynomials in equation 5? Here’s an example to illustrate an application

of them.

Question 11. Suppose that f is the function f(x) =
1

1 + (x− 0.5)2
, 0 ≤ x ≤ 1. Use equation 5 to

show that

B1(f) = 0.8(1 − t) + 0.8t(= 0.8)

B2(f) = 0.8(1 − t)2 + 2(1 − t)t+ 0.8t2

B3(f) = 0.8(1 − t)3 + 2.92(1 − t)2t+ 2.92(1 − t)t2 + 0.8t3.

When you graph the polynomials B1(f), B2(f), B3(f) and the function f(x) in the same coordinate
system, you get the picture in figure 5. The top graph is the graph of f and the graphs of B1(f), B2(f),
B3(f) seem to get close to the graph of f .

Figure 5. Polynomial Approximation n = 3

What do you think will happen when you calculate B4(f), B5(f), etc. In figure 6 below, I plot the

graphs of the polynomial Bn(f) for n = 1, 2, . . . , 50 and the graph of f(x) =
1

1 + (x− 0.5)2
(the top curve)

on the same coordinate system, as you can see, the larger n becomes, the closer the graph of Bn(f) is to
the graph of f .

Figure 6. Polynomial Approximation n = 50
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There is a deep and beautiful theorem in mathematics which says that if you have any continuous
function defined on the interval [0, 1], then the sequence of functions Bn(f) as defined in equation 5 will
get closer and closer to that function as n get larger and larger.

Question 12. Now, it is your turn. Choose a function f which is continuous on [0, 1] that you like
(other than x, x2 and the one I have in question 11). Calculate Bn(f) for n = 1, 2, . . . , 10, or even a larger
n if you’d like (and you don’t have to do this by hand). Use any software or calculator of your choice to
graph the Bn(f), n = 1, . . . , 10 and the funtion f in the same coordinate system. Print out the picture
you get and submit it for this question.

Further research - optional - 5 extra points towards project points if answered. The polyno-
mials Bn(f) are not the only type of polynomial that can be used to approximate function. As a matter of
fact, another type of polynomials that are also very useful in approximating functions is the class of Taylor
polynomials, which you will study carefully in Cal II. Research Taylor polynomials and write a (roughly)
200 word essay to describe Taylor polynomials and their use.
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