2.4 Continuity Monday, July 16, 2018 9:**13** AM Goals: (1) Understand the "limit" definition of continuity. (2) Classify different types of discontinuity. Intuitive concept of a continuous function. y = g(x)

Monday, July 16, 2018

9:51 AM

What does it mean for
$$y = f(x)$$
 to be continuous
at $x = a$?
To answer this, we analyze situation when f
fails to be continuous at $x = a$.
* 30
* 1 $f(a)$ is undefined,
then f is NOT continuous
at $x = a$.
• 1st requirement for continuity:
 f must be defined at $x = a$
* 30
* 1 $f(x)$ DME, then f is
NOT continuous at $x = a$.

Monday, July 16, 2018 10:00 AM

$$\begin{array}{c} & \begin{array}{c} & & \\ & &$$

Définition: A function y = f(x) is continuous at a point x = a if the following conditions are satisfied (1) f(a) munt be defined (2) $\lim_{X \to a} f(x)$ must exist (3) lim f(x) = f(a)Note: We say that I is continuous on the open interval (c,d) if f is continuous at every point a within the interval Note: If it is a half-closed interval, e.g., [c,d), we look at the night limit at c.

Monday, July 16, 2018 10:08 AM E.g. Let $f(x) = \begin{cases} x^2 - e^x & \text{if } x < 0 \\ x - 1 & \text{if } x \ge 0 \end{cases}$ From the definition of continuity above, is f continuous at x = 0? $\sqrt{1}$ In f(0) defined? Yes, in fact, f(0) = -1√ (2) Does lim f(x) exist ?
x + 0 $\lim_{X \to 0} f(x) = \lim_{X \to 0} (x^2 - e^x) = (0)^2 - e^0$ = -1 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x-1) = -1$ So, lim f(x) exists (blc left limit = right limit) $\sqrt{3} f(0) = \lim_{x \to 0} f(x) ? (both = -1)$

Monday, July 16, 2018 10:16 AM

(onclusion:
$$f$$
 is continuous at $x=0$.
E.g * Is $g(x) = \frac{2x^2 - 5x + 3}{x - 1}$ continuous at
 $x = 1$? No. It violates (1)
* Is $u(x) = \begin{cases} 3x & \text{if } x < 1 \\ x^3 & \text{if } x \ge 1 \end{cases}$ continuous at
 $x = 1$? No. It violates (2)
* Is $w(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \ne 0 \\ 3 & \text{if } x = 0 \end{cases}$ continuous at
 $x = 0$? No. It violates (3).

Fact: Any polynomial function is continuous
at every real number, i.e., on
$$(-\infty, \infty)$$

E.g. $g(x) = x^5 - 4x^4 + 3x^3 - 2x^2 + x - 1$.