3.2. The derivative as a function
The formula
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

gives us the derivative of f at a particular point
 $x = a$.
We want : to have a formula that can give
us the derivative at arbitrary points.
 $x = 0$ $f' \longrightarrow derivative of f$
First step: replace a by x in the definition:
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
This defines a function, called f' , interms of
x. That function $y = f'(x)$ is called the
derivative function of f or in short it is called

Tuesday, July 17, 2018 10:16 AM

the derivative of f:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
provided the limit exists
Domain of f' = {x | f'(x) exists }
E.g. $f(x) = x^2$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h)^2 - x^2}{h}$
 $= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$
 $= \lim_{h \to 0} \frac{x^2 + 2xh + h^2}{h} = \lim_{h \to 0} \frac{f(2x+h)}{h}$

Tuesday, July 17, 2018 10:23 AM

=
$$\lim_{h \to 0} (2x+h) = 2x$$

 $f'(x) = 2x - the derivative of the function$
 $f(x) = x^2$ is given by the formula $f'(x) = 2x$
 $So, f'(1) = 2; f'(2) = 4; f'(\frac{7}{2}) = 7$
 $f'(\frac{9}{4}) = \frac{9}{2} \cdot \cdots$
Now, consider $f(x) = x^3$. We want to find
the formula for $y = f'(x)$.
By definition, $(x+h)^3$ $(x+h)^3$ $(x+h)^3$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h)}{h} - \frac{f(x)}{h}$

Tresday, July 17, 2028 10:28 AM

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} \qquad \left(\frac{0}{0}\right)$$
Pascal Triangle:

$$\frac{1}{12} \qquad \frac{1}{12} \qquad \frac{x^2 + h}{h} \qquad \frac{1}{12} \qquad \frac{1}{12} \qquad \frac{x^2 + h}{h} \qquad \frac{1}{12} \qquad \frac{1}{12} \qquad \frac{x^2 + 2xh + h^2}{h} \qquad \frac{1}{12} \qquad \frac{1}{12} \qquad \frac{x^2 + 2xh + h^2}{h} \qquad \frac{1}{12} \qquad \frac{1}{12} \qquad \frac{x^2 + 3xh^2 + h^3}{h} \qquad \frac{1}{12} \qquad \frac{1}{12$$

 $= \lim_{h \to 0} (3x^{2} + 3xh + h^{2}) = 3x^{2}.$ If $f(x) = x^3$, then $f'(x) = 3x^2$. E.g. Equation of the tangent line to graph of $f(x) = x^3$ at the point where x = -2 $Slope = f'(-2) = 3 \cdot (-2)^2 = 12$ Point (-2,-8). Equation: y + 8 = 12(x+2)y = 12x + 16

Tuesday, July 17, 2018 10:39 AM
So far, function
$$f(x)$$

 $f(x) = x^{2}$
 $f(x) = x^{3}$
 $f(x) = x^{4}$
 $f(x) = x^{4}$
 $f(x) = x^{2018}$
 $f'(x) = 2x$
 $f'(x) = 3x^{2}$
 $f'(x) = 4x^{3}$
 $f'(x) = 2018 c$

E.g.
$$f(x) = \sqrt{x}$$

Use the definition of the derivative function
to develop the formula for $f'(x)$.
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \int_{x+h}^{x} \frac{f(x+h) - f(x)}{h} = \int_{x+h}^{x} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$

1

Tuesday, July 17, 2018 10:47 AM = $\lim_{h \to 0} \frac{\chi + h}{h} \frac{\chi}{\chi}$ = $\lim_{h \to 0} \frac{\chi}{h} (\sqrt{\chi + h} + \sqrt{\chi})$ $\lim_{h \to 0} \frac{\chi}{h} (\sqrt{\chi + h} + \sqrt{\chi})$

 $= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$ If $f(x) = \sqrt{x}$, then $f'(x) = \frac{1}{2\sqrt{x}}$ Find $f'(100) = \frac{1}{20}$; $f'(81) = \frac{1}{18}$ f'(0) = DNE; f'(-2) DNE. Def: We say that a function f is differentiable at a point x if f'(x) exists, i.e., the derivative exists at that point.