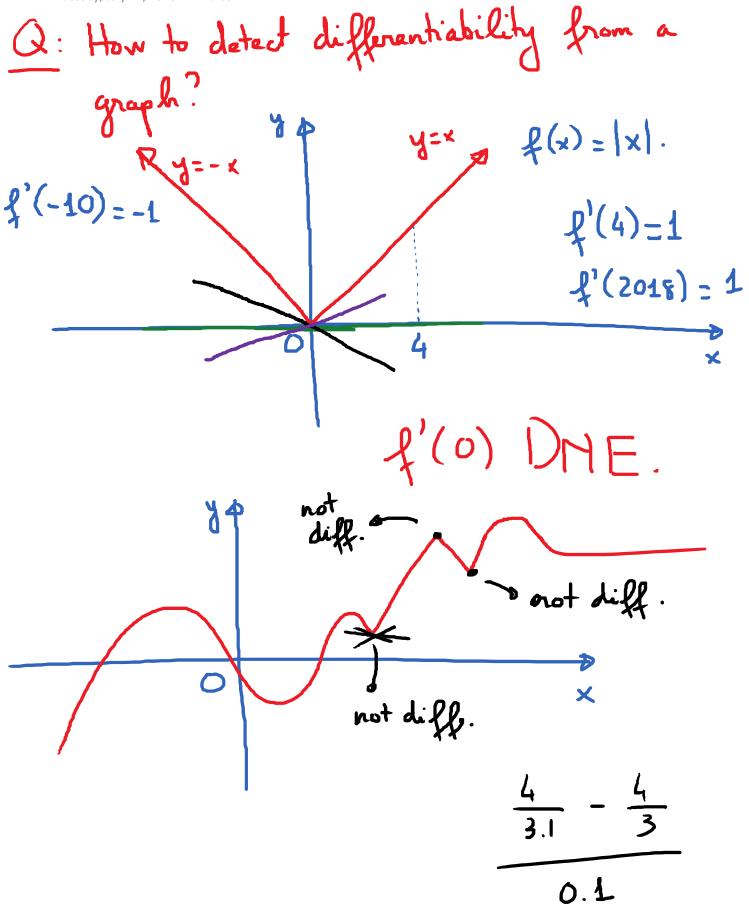
Tuesday, July 17, 2018 10:52 AM

For
$$f(x) = x^2$$
, $f'(x) = 2x$, it exists at every
number in $(-\infty,\infty)$. So, the function $f(x) = x^2$
is differentiable everywhere.
For $f(x) = \sqrt{x}$, $f'(x) = \frac{1}{2\sqrt{x}}$, it exists
at every number in $(0,\infty)$.
So, $f(x) = \sqrt{x}$ is differentiable on $(0,\infty)$.
 $f(x) = \sqrt{x}$ is NOT differentiable
on $(-\infty,0]$.
 $f(x) = \frac{1}{x^2}$ is NOT differentiable
 $\frac{1}{2\sqrt{x}}$ $\frac{1}{2x^2}$ $\frac{1}{2x^2}$ $\frac{1}{2x^2}$

Tuesday, July 17, 2018

10:59 AM

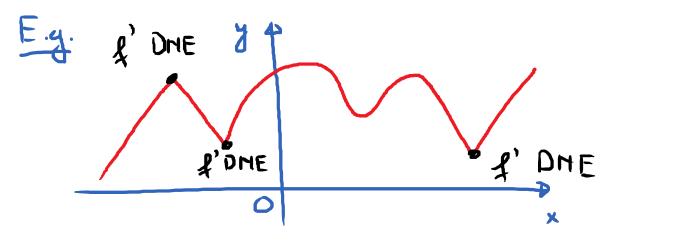


E.g. Use definition of the derivative to show that for the function f(x) = |x|, the derivative does not exist at x = 0; i.e., f'(0) DNE. $f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ $=\lim_{h\to 0} \frac{f(h) - f(0)}{h} = 0$ $= \lim_{h \to 0} \frac{|h|}{h}$ $\frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} (1) =$ h→0+ $\lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \left(\frac{-h}{h}\right)$ $= \lim_{h \to 0} (-1) = -1$ h>0 -5 h20

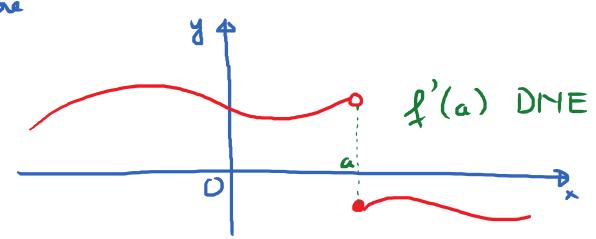
Wednesday, July 18, 2018 7:38 AM

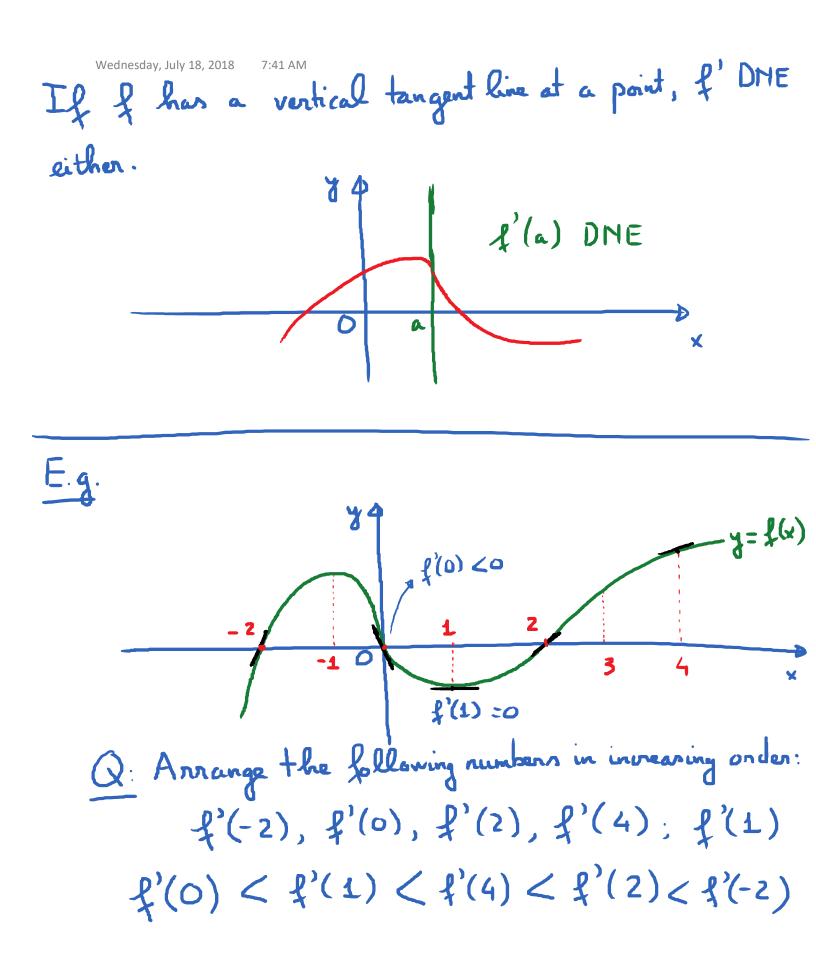
Since left limit + right limit, limit DNE. So, f'(O) DHE. In general, if a graph has a "conner" at a point,

the derivative DNE there.



Also, if fis Not continuous a point, f' DME there





Wednesday, July 18, 2018

