Thursday, July 19, 2018 800 AM
(Hote: Speading up -
$$u(t) > 0$$
 on $u(t) < 0$
bottom line . speeding up $\equiv a(t)$ and $v(t)$
have the same sign.
Slowing down - $u(t) < 0$ alt $0 < 0$
 $u(t) < 0$ $u(t) < 0$
Slowing down $\equiv a(t)$ and $v(t)$ have
opposite signs.
Problem becomes : finding the interval(s)
on which $a(t)$ and $v(t)$ have the same sign
 $a(t) = s''(t) = v'(t) = 6t - 18$
 $a(t) = 0 \rightarrow t = 3$

Threshold (of right of a(t) and
$$v(t)$$
)
 $t = 0$ 2 3 4 ∞
 $v(t)$ $t = 0$ 0 t t
 $a(t)$ 0 0 t t
 $a(t)$ 0 0 t t
(onclusion: Spead up: (2,3) U(4, ∞)
Slow down: (0,2) U(3,4)
E.x. $h(t) = \frac{t}{1+t^2}$, $t \ge 0$.
Time interval(h) on which object is speading up on
slowing down?
 $v(t) = h'(t) = \frac{1 \cdot (1+t^2) - 2t \cdot t}{(1+t^2)^2}$

Throws, July 19, 2018 824 M

$$v(t) = \frac{1 + t^{2} - 2t^{2}}{(1 + t^{2})^{2}} = \frac{1 - t^{2}}{(1 + t^{2})^{2}} = \frac{1 - t^{2}}{t^{4} + 2t^{2} + 1}$$

$$a(t) = v^{3}(t) = \frac{-2t(t^{4} + 2t^{2} + 1) - (1 - t^{2})(4t^{3} + 4t)}{(t^{4} + 2t^{2} + 1)^{2}}$$

$$= \frac{-2t^{5} - 4t^{3} - 2t - 4t^{3} - 4t(-4t^{5}) + 4t^{3}}{(t^{4} + 2t^{2} + 1)^{2}}$$

$$= \frac{2t^{5} - 4t^{3} - 6t}{(t^{4} + 2t^{2} + 1)^{2}} = \frac{2t(t^{4} - 2t^{2} - 3)}{(t^{4} + 2t^{2} + 1)^{2}}$$
(b) Slow down / Spead up.
Step 1: $v(t) = 0$, $a(t) = 0$
 $v(t) = \frac{1 - t^{2}}{(4 + t^{2})^{2}} = 0$

$$= 0$$

$$t^{2} = 1$$

$$t^{2} = 1$$

Thursday, July 19, 2018 8:35 AM

Since
$$t \ge 0$$
, we choose $t = 1$
 $a(t) = \frac{2t(t^4 - 2t^2 - 3)}{(t^4 + 2t^2 + 1)^2} = 0$
 $t = 0$ on $t^4 - 2t^2 - 3 = 0$
Eithen $2t = 0$ on $t^4 - 2t^2 - 3 = 0$
 $t = 0$ $(t^2 - 3)(t^2 + 1) = 0$
 $t^2 - 3 = 0$ on $t^2 + 1 = 0$
 $t^2 - 3 = 0$ on $t^2 + 1 = 0$
 $t^2 = 3$ $t = 1$
 $t = 1\sqrt{3}$
 $t = 1\sqrt{3}$
 $t = 1\sqrt{3}$
 $t = 1\sqrt{3}$

Thursday, July 19, 2018 8:44 AM

Note for $HW: y = C(x) \rightarrow cost function.$

Marginal cost = C'(x)