
2) Find the Domain of Sum, Difference, Product and Quotient of
2 functions.
Suppose that we are given 2 function
$$f$$
 and g .
The domain of f is D_{f}
The domain of g is D_{g}
To find the domain of $f+g: f-g: f:g$, we just need to find
the intersection between the domain of f and the domain of
 g .
In mathematical notation:
Domain of $f+g = D_{f} \cap D_{g}$

Monday, September 10, 2018 12:01 PM

Domain of $f-g = D_f \cap D_g$ Domain of fig = $D_f \cap D_g$ $f_{x,q}$, $f(x) = \frac{5}{4-x}$; $g(x) = \frac{x}{2x+3}$. Q: Find the domain of f+g, f-g and f.g? Strategy: Find Dg. Find Dg. Find Dg A Dg. Step 1: Find Dg. $4 - x = 0 \implies x = 4.$ De = all real #15 except for 4 $= (-\infty, 4) \cup (4, \infty)$

Monday, September 10, 2018 12:10 PM

How to find the domain of
$$\frac{f}{g}$$
?
Process: Step 1: Find D_{g} . Step 2: Find D_{g}
Step 3: Find $D_{g} \cap D_{g}$
Step 4: Find any values of x for which $g(x) = 0$
Step 5: Conclusion: the domain of $\frac{f}{g}$ will be the
set in Step 3 excluding any values of x found
in Step 4:
E.g. $f(x) = \frac{3}{x-5}$; $g(x) = x+7$.
Q: Find the domain of $\frac{f}{g}$?

Step 1: Find D_f

$$D_{g} = (-\infty, 5) \cup (5, \infty)$$

Step 2: Find D_g
 $D_{g} = (-\infty, \infty)$
Step 3: Find D_g (n D_g
 $D_{f} \cap D_{g} = (-\infty, 5) \cup (5, \infty)$
Step 4: Find all values of x for which $g(x) = 0$.
Take $g(x)$ and set it equal to 0 and solve for x.
Take $g(x)$ and set it equal to 0 and solve for x.
 $x+7 = 0 \iff x = -7$
Step 5: Conclusion. $= -7$
Domain = $(-\infty, -7) \cup (-7, 5) \cup (5, \infty)$