Thursday, September 6, 2018 11:43 AM

(2)
$$f(a) = 2a - 1$$
; $g(a) = a + 4$
 $(f \cdot g)(a) = f(a) \cdot g(a) = (2a - 1) \cdot (a + 4)$
 $= 2a^2 + 8a - a - 4$
 $(f \cdot g)(a) = 2a^2 + 7a - 4$
(3) $u(3) = 2 - (3)^2 = -7$; $v(3) = 3 - 1 = 2$
 $(\frac{u}{v})(3) = \frac{-7}{2}$.
(2) Find Domains of Sum, Difference, Product and
Questiont of 2 functions.
Suppose we are given the functions f and g
The domain of f is D_f
The domain of f is D_g

•

To find the domain of
$$f+g$$
, $f-g$ and $f\cdot g$, we just
need to find the intersection between the domain of
 f and the domain of g .
In mathematical notation,
Domain of $f+g = D_f \cap D_g$
Domain of $f-g = D_f \cap D_g$
Domain of $f \cdot g = D_f \cap D_g$
 $E \cdot g = f(x) = \frac{5}{4-x}$, $g(x) = \frac{x}{2x+3}$
 Q : Find domain of $f \cdot g$, $f - g$ and $f \cdot g$
Strategy: Find D_g . Find D_g and Find
 $D_f \cap D_g$

* Find Dg. $4-x=0 \iff x=4$ De = all real #1 s except for 4 $= (-\infty, 4) \cup (4, \infty)$ * Find Dg 2x+3=0 \longrightarrow 2x=-3 \longrightarrow $x=-\frac{3}{2}$. Dy = all real # n except for - 3/2 $= \left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$ * Find De 1 Da

$$D_{g} \cap D_{g} = (-\infty, -\frac{3}{2}) \cup (-\frac{3}{2}, 4) \cup (4, \infty)$$

* To find the domain of $\frac{f}{g}$, we do the following
Step 1: Find D_{g} · Step 2: Find D_{g}
Step 3: Find $D_{g} \cap D_{g}$
Step 4: Find any values of x for which $g(x) = 0$
Step 5: The domain of $\frac{f}{g}$ will be the set
in Step 3 excluding any values of x found in
Step 4.

Thursday, September 6, 2018 12:10 PM

E.g.
$$f(x) = \frac{3}{x-5}$$
; $g(x) = x+7$
Q: Find the domain of $\frac{1}{3}$?
Step 1: Find D_{f} :
 $D_{g} = (-\infty, 5) \cup (5, \infty)$
Step 2: Find D_{g}
 $D_{g} = (-\infty, \infty)$
Step 3: Find $D_{f} \cap D_{g}$
 $D_{f} \cap D_{g} = (-\infty, 5) \cup (5, \infty)$
Step 4: Find any values of x for which $g(x) = 0$.
 $g(x) = 0 \implies x+7=0 \implies x = -7$
Step 5: Conclusion
 $D_{g} = (-\infty, -7) \cup (-7, 5) \cup (5, \infty)$