
2.4. Sum, Difference, Product and Quartient of 2 functions
Objectives: (1) The algebra of functions
(2) Find domain of the sum, difference, product,
quotient of 2 functions
(1) Suppose that f and g are functions of x.
The sum of f and g is a function defined as:

$$(f + g)(x) = f(x) + g(x)$$

E.g. $f(x) = 3 - x$; $g(x) = 3x^2 + 1$.
 $f(z) = 1$; $g(z) = 13$.
 $(f + g)(z) = f(z) + g(z) = 1 + 13 = 14$
 $(f + g)(x) = f(x) + g(x)$
 $= (3 - x) + (3x^2 + 1)$
 $(f + g)(x) = 3x^2 - x + 4$

•

 $(f+g)(x) = 3x^2 - x + 4$

Another way to find (f+g)(2) = 3(2)² - 2 + 4 = 14

Thursday, September 6, 2018 11:18 AM

$$(f - g)(x) = f(x) - g(x) \quad (\text{Difference})$$

$$(f \cdot g)(x) = f(x) \cdot g(x) \quad (\text{Product})$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \quad (\text{Quotient})$$

$$g(x) = \frac{f(x)}{g(x)} \quad \text{provided that } g(x) \neq 0$$

$$\begin{array}{l} \overline{\text{E.g.}} & f(x) = 3 - x \; ; \; g(x) = 3x^2 + 4 \; . \\ \hline \underline{\text{a1}} : \; \overline{\text{Find}} \left(f - g \right) (-2) \; ; \; \left(f \cdot g \right) (-2) \; ; \; \left(\frac{f}{g} \right) (-2) \; . \\ \hline \underline{\text{a2}} : \; \overline{\text{Find}} \; + \frac{1}{2} \; f_{\text{nmula}} \; f_{\text{an}} : \\ & (f - g \;) (x) \; ; \; (f \cdot g) (x) \; ; \; (\frac{f}{g} \;) (x) \; . \\ \hline \underline{\text{a1}} : \; \underbrace{\text{Step 1}} : \; f(-2) = 3 - (-2) = 5 \\ & g(-2) = 3(-2)^2 + 1 = 13 \\ \hline \underline{\text{Step 2}} : \; (f - g \;) (-2) = f(-2) - g(-2) \\ & = 5 - 13 = [-8] \end{array}$$

Thursday, September 6, 2018

Thursday, September 6, 2018 11:24 AM

$$(f \cdot g)(-2) = f(-2) \cdot g(-2) = 5 \cdot 13 = 65$$

$$(f \cdot g)(-2) = \frac{f(-2)}{g(-2)} = \frac{5}{13}$$

$$(g - g)(x) = f(x) - g(x)$$

$$= (3 - x) - (3x^{2} + 1)$$

$$= 3 - x - 3x^{2} - 1$$

$$(f - g)(x) = -3x^{2} - x + 2$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$= (3 - x) \cdot (3x^{2} + 1)$$

$$= 9x^{2} + 3 - 3x^{3} - x$$

$$(f \cdot g)(x) = -3x^{3} + 9x^{2} - x + 3$$

Thursday, September 6, 2018 11:28 AM

$$\left(\frac{4}{9}\right)(x) = \frac{4(x)}{g(x)} = \frac{3-x}{3x^2+1}$$

Ex.(1) $F(x) = x^2-6$; $G(x) = -3x$.
Find $(F - G)(-2)$.
(2) $f(x) = 2x - 1$; $g(x) = x + 4$.
Find $(f \cdot g)(a)$
(3) $u(x) = 2 - x^2$; $v(x) = x - 1$.
Find $\left(\frac{u}{v}\right)(3)$.
Sol: (1) $F(-2) = (-2)^2 - 6 = 4 - 6 = -2$
 $G(-2) = -3 \cdot (-2) = 6$
 $(F - G)(-2) = F(-2) - G(-2)$
 $= -2 - 6 = -8$.