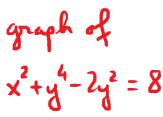
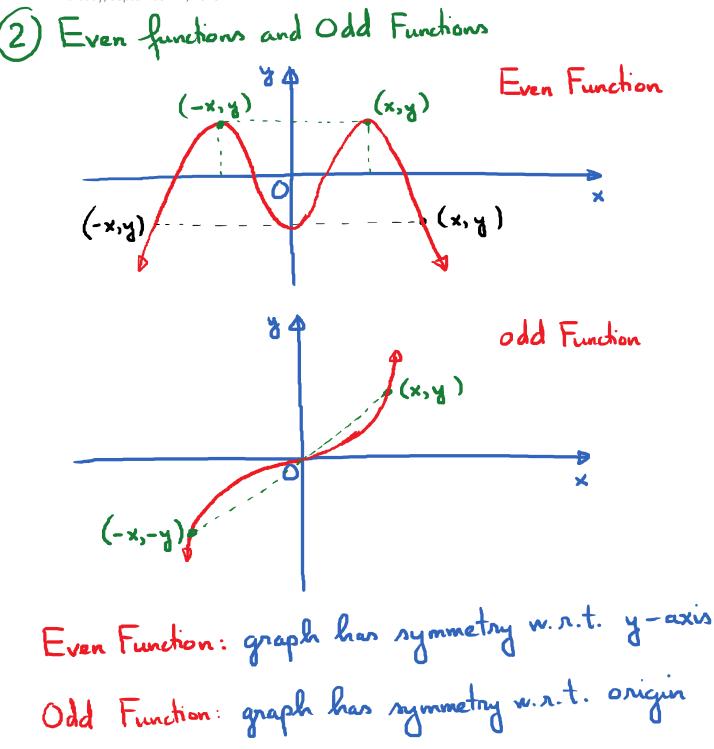

7.1. Symmetry Thursday, September 27, 2018 12:56 PM Objectives: (1) Algebraic Tests of Symmetry (2) Even Functions and Odd Functions B(-2,3) 3 A(2,3) (4)D(-2,-3) (x,y) and (-x,y) are symmetric with respect to y-axis (x,y) and (x, -y) are symmetric w.r.t. x-axis (x,y) and (-x,-y) are symmetric w.r.t. origin. To test whether an equation has symmetry w.r.t. * y-axis: Replace x by - x in the equation and simplify. If we obtain the same equation, then it has the symmetry w.r.t. y-axis. Otherwise, it does


Thursday, September 27, 2018

* x - axis: Replace y by - y in the equation and simplify. * Origin : Replace x by - x and y by - y in the equation and simplify. <u>E.g.</u> $x^2 + y^4 - 2y^2 = 8$ Q: Test for symmetry w.r.t. x-axis, y-axis and the origin * x-axis: Replace y by - y $x^{2} + (-y)^{4} - 2(-y)^{2} = 8$ (Replace y by - y) $x^{2} + y^{4} - 2y^{2} = 8$ (Simplify) Same as the original equation - Conclusion: it has symmetry w.r.t. x-axis * y-axis: Replace x by-x $(-x)^{2} + y^{4} - 2y^{2} = 8$ (Replace x by -x) $x^{2} + y^{4} - 2y^{2} = 8$ (Simplify) Same as the original equation.


Thursday, September 27, 2018

· Conclusion: it has symmetry w.r.t. y-axis * Origin: Replace x by -x and y by -y. $(-x)^{2} + (-y)^{4} - 2(-y)^{2} = 8$ $x^2 + y^4 - 2y^2 = 8$ - Same as original equation - Conclusion : it has symmetry w.r.t. the origin

Thursday, September 27, 2018 1:27 PM

Given the formula y = f(x), can we test algebraically whether the function is odd on even. Keplace x by - x in the formula for f(x) (1) If f(-x) = f(x), then function is even. (2) If f(-x) = -f(x), then function is odd. (3) Naither (1) non (2), the function is reither odd non E.g. $f(x) = 5x^6 - 3x^2 - 7$. Is this function odd or even or neither? $f(-x) = 5(-x)^6 - 3(-x)^2 - 7$ $= 5x^6 - 3x^2 - 7 \longrightarrow \text{formula for } f(-x)$ $S_0, f(x) = f(-x).$ Conclusion: fis even.

Thursday, September 27, 2018 1:41 PM

Note: For polynomial functions, if all the powers of x
are even, then the function is even.
E.g.
$$g(x) = 5x^{7} - 6x^{3} - 2x$$
. Is geven, odd, neither?
 $g(-x) = 5(-x)^{7} - 6(-x)^{3} - 2(-x)$ (Replace x
by -x)
 $= -5x^{7} + 6x^{3} + 2x$ -> farmula for
 $g(-x)$
So, $g(-x) = -g(x)$. So, g is odd.