
The zeros of a quadratic function
$$f(x) = ax^2 + bx + c$$
 are
the solutions of the quadratic equations $ax^2 + bx + c = 0$
 $f(x)$

E.g.
$$3x^2 - 7x = 0$$

 $x(3x-7) = 0$
Zero product principle:
 $x = 0$ or $3x - 7 = 0$
 $x = \frac{7}{3}$
Solution set: $\{0, \frac{7}{3}\}$

Thursday, October 4, 2018 11:25 AM

E.g. Solve 3x² = 17 $\rightarrow x^2 = \frac{44}{3}$ \longrightarrow Square Root Brinciple: $X = \sqrt{\frac{17}{2}}$ or $x = -\sqrt{\frac{17}{2}}$ <u>E.g.</u> Solve 2x² - 10 = 0 $2x^2 = 10 \rightarrow x^2 = 5$ \rightarrow x = ± 5 Method of Completing the Square. $x^2 - 6x + 9 = 10 + 9$ (x-3) = 19 $x - 3 = \pm \sqrt{19} \longrightarrow x = 3 \pm \sqrt{19}$

Thursday, October 4, 2018 11:37 AM

E.g. x' + 8x + 18 = 0 $x^2 + 8x + 16 = -18 + 16$ $(x+4)^{2} = -2$ or $x+4 = -\sqrt{-2}$ $x + 4 = \sqrt{-2}$ $x + 4 = i\sqrt{2}$ or $x + 4 = -i\sqrt{2}$ $x = -4 + i\sqrt{2}$ or $x = -4 - i\sqrt{2}$. (We can vorite this as $x = -4 \pm i\sqrt{2}$) Quadratic Formula: The solutions of ax2+bx+c=0; a=0 are given by the formula: $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Thursday, October 4, 2018

11:46 AM

Solve the following equations:

$$x^{2}-6x - 10 = 0$$

$$a = 1; b = -6; c = -10$$

$$x = \frac{6 \pm \sqrt{36 - 4 \cdot 1 \cdot (-10)}}{2} = \frac{6 \pm \sqrt{76}}{2}$$

$$x = \frac{6 \pm \sqrt{19 \cdot 4}}{2} = \frac{6 \pm 2\sqrt{19}}{2} = 3 \pm \sqrt{19}$$

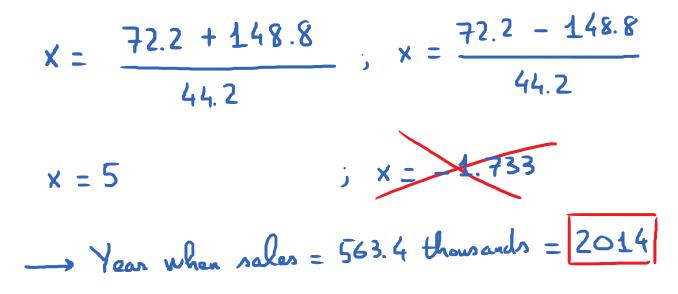
E.g. (a) Solva $3x^{2} + 2x = 7$. (b) $x^{2} + 5x + 8 = 0$
(a) $3x^{2} + 2x - 7 = 0; a = 3; b = 2; c = -7$

$$x = \frac{-2 \pm \sqrt{4 - 4 \cdot 3 \cdot (-7)}}{6} = \frac{-2 \pm \sqrt{88}}{6}$$

$$x = \frac{-2 \pm \sqrt{4 \cdot 22}}{6} = \frac{-2 \pm 2\sqrt{22}}{6}$$

$$x = \frac{-1 \pm \sqrt{22}}{3}$$

Thursday, October 4, 2018 12:00 PM


(b)
$$x^{2}+5x+8=0$$
; $a=1$; $b=5$; $c=8$
$$\frac{-5\pm\sqrt{25-4\cdot1\cdot8}}{2}=\frac{-5\pm\sqrt{-7}}{2}=\frac{-5\pm\sqrt{7}}{2}$$

Discriminant.
The quantity
$$b^2 - 4ac$$
 is called the discriminant
of the equation $ax^2 + bx + c = 0$; $a \neq 0$.
 $b^2 - 4ac > 0$ — The equation has 2 real
solutions.
 $b^2 - 4ac < 0$ — The equation has 2 non-real
selutions
 $b^2 - 4ac = 0$ — The equation has one real
solutions:
 $b^2 - 4ac = 0$ — The equation has one real
solutions:
 $b^2 - 4ac = 0$ — The equation has one real
solution : $x = -\frac{b}{2a}$

Application:

$$f(x) = 22.1 x^2 - 72.2x + 371.9$$

This function is used to astimate # of sales of vew
horners, in thousands, in the U.S., where x is the #
of years after 2009.
Q: In what year were the # of sales of vew homes
about 563 400 on 563.4 thousands.
Set 22.1 x² - 72.2x + 371.9 = 563.4
 \rightarrow Solve for x.
 $a^2 (-72.2)x - 191.5 = 0$

$$X = \frac{72.2 \pm \sqrt{(-72.2)^2} - 4.(22.1) \cdot (-191.5)}{2 \cdot (22.1)}$$

