(

Thursday, October 4, 2018 1:10 PM

The zeros of a quadratic function
$$f(x) = ax^2 + bx + c$$

are the solutions of the equation $ax^2 + bx + c = 0$.
 $f(x)$

Equation - Solving Principles

$$\overline{Zeno-Product Principle}$$

 $\overline{If} A \cdot B = 0$, then either $A = 0$ on $B=0$
Apply the zero-product principle and factoring to
solve quadratic equations:
 $\overline{E.g.} 3x^2 - 7x = 0$
 $\underline{X}(3x - 7) = 0$
Solution Set: $\{0, \frac{7}{3}\}$
 $x = \frac{7}{3}$

Thursday, October 4, 2018 1:20 PM

E.g. Solve
$$x^2-3x+2=0$$

 $(x-1)(x-2)=0$
Zero product Principle
 $x-1=0$ or $x-2=0$
 $x=1$ or $x=2$.
Solution set: $\{1,2\}$
E.g. Find the zeros of the function
 $f(x) = 2x^2 - x - 3$
Sol: $f(x) = 0 \rightarrow 2x^2 - x - 3 = 0$
 $\rightarrow 2x^2 + 2x - 3x - 3 = 0$
 $\rightarrow 2x(x+1) - 3(x+1) = 0$
 $\rightarrow (2x-3)(x+1) = 0$
 $2x-3=0 \rightarrow x=\frac{3}{2}$, $x+1=0 \rightarrow x=-1$
Solution set: $\{\frac{3}{2}, -1\}$

Thursday, October 4, 2018 1:29 PM

Square Root Principle
If
$$A^2 = k$$
, then $A = \sqrt{k}$ or $A = \sqrt{k}$

$$E.g. Solve 3x^{2} - 10 = 0$$

$$\longrightarrow 3x^{2} = 10 \longrightarrow x^{2} = \frac{10}{3}$$

$$\longrightarrow \boxed{x = \pm \frac{10}{3}}$$

$$E.g. Solve (2x + 5)^{2} = 17$$

$$\longrightarrow 2x + 5 = \pm \sqrt{17}$$

$$\longrightarrow 2x = -5 \pm \sqrt{17} \longrightarrow x = \frac{-5 \pm \sqrt{17}}{2}$$

Thursday, October 4, 2018 1:37 PM

Method of Completing the Square E.g. Solve $x^2 - 6x - 10 = 0$ $x^2 - 6x + 9 = 10 + 9$ $(x-3)^2 = 19$ \rightarrow x-3 = ± 19 \rightarrow x = 3 ± 19 $x^{2} + 8x + 18 = 0$ E.g. $x^{2} + 8x + 16 = -18 + 16$ $(x+4)^2 = -2$ non-real solutions $x + 4 = \pm \sqrt{-2}$ $x + 4 = \pm i\sqrt{2} \rightarrow x = -4 \pm i\sqrt{2}$

Thursday, October 4, 2018 1:49 PM

Quadratic Formula

The solution of
$$ax^{2}+bx+c=0; a \neq 0$$
 are given by
the formula:
 $x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$
E.g. Solve the given equation and completely simplify
the solution:
(a) $3x^{2}+2x=7$ (b) $x^{2}+5x+8=0$
Sol: (a) $3x^{2}+2x=7=0; a=3; b=2; c=-7$
 $x = \frac{-2 \pm \sqrt{4-4\cdot3\cdot(-7)}}{6} = \frac{-2\pm \sqrt{88}}{6} = \frac{-2\pm \sqrt{4\cdot22}}{6}$
 $x = \frac{-2 \pm 2\sqrt{22}}{6} = \frac{-1 \pm \sqrt{22}}{3}$

Thursday, October 4, 2018 2:01 PM

(b)
$$x^{2}+5x+8=0$$
; $a=1$; $b=5$; $c=8$
 $x = \frac{-5 \pm \sqrt{25-4 \cdot 1 \cdot 8}}{2} = \frac{-5 \pm \sqrt{-7}}{2}$
 $x = \frac{-5 \pm i\sqrt{7}}{2}$

Discriminant

The quantity
$$b^2 - 4ac$$
 is called the discriminant
of the equation $ax^2 + bx + c = 0$.
 $b^2 - 4ac > 0$ — The equation has 2 real solutions
 $b^2 - 4ac < 0$ — The equation has 2 non-real solution
 $b^2 - 4ac < 0$ — The equation has 2 non-real solution
 $b^2 - 4ac = 0$ — The equation has 1 real solution
 $x = -\frac{b}{2a}$

Application: in thousands $f(x) = 22.1 x^2 - 72.2 x + 371.9$ This function is used to estimate the # of sales v of new homes in the U.S. where x is the # of years after 2009. Q: In what year were the # of sales of new homes about 563 400 or 563.4 thousands. Set 22.1 x² - 72.2x + 371.9 = 563.4 and solve $\frac{a}{22.1} \times^2 - 72.2 \times -191.5 = 0$ forx. a $X = \frac{72.2 \pm \sqrt{(-72.2)^2 - 4.(22.1).(191.5)}}{4.(22.1).(191.5)}$ 44.2

Thursday, October 4, 2018 2:14 PM

