7.4. Quadratic Equations, Functions, Zeros and Models Monday, October 8, 2018 11,07 AM

Objectives: 1) Quadratic Equations and Functions.

- 2 Completing the Square.
- (3) Using Quadratic Formula.
- 4 Discriminant.
- (5) Application.

1) A quadratic equation is an equation of the form $ax^2 + bx + c = 0$

Here a, b, c are real numbers and a \$0.

E.g. $x^2-3x+2=0$. a=1; b=-3; c=2

A quadratic function is a function of the form: $f(x) = ax^2 + bx + C$; a, b, c are real #15 and $a \neq 0$ E_{g} . $f(x) = x^2 - 3x + 2$. The zeros of a quadratic function $f(x) = ax^2 + bx + c$ are

the solutions of the equation ax2+bx+c=0

Equation - Solving Principles

Zero-Product Principle

If A.B=0, then either A=0 or B=0

Apply the zero-product principle and factoring to solve quadratic equations.

E.g. $3x^2 - 7x = 0$. Solve this equation by factoring.

$$x(3x-7)=0$$

___ Zero-Product Principle

on 3x - 7 = 0

$$x = \frac{7}{3}$$

Solution Set: $\{0, \frac{7}{3}\}$

Monday, October 8, 2018

E.g. Solve
$$x^2-3x+2=0$$
 by factoring.

$$(x-1)(x-2) = 0$$

____ Zero-Product Principle:

$$x - 1 = 0$$
 on $x - 2 = 0$

$$x=1$$
 or $x=2$

Solution Set: {1,2}

E.g. Find the zeros of the function:

$$f(x) = 2x^2 - x - 3$$

 $\frac{Sol:}{4}(x)=0 \longrightarrow 2x^2-x-3=0.$

$$(2x-3)(x+1)=0$$

 \rightarrow 2x-3=0 on x+1=0

$$x = \frac{3}{2}$$
 on $x = -1$

 $x = \frac{3}{2}$ on x = -1. Solution Set $\{\frac{3}{2}, -1\}$

Square Root Principle

If
$$A^2 = k$$
, then $A = \sqrt{k}$ on $A = -\sqrt{k}$

$$\frac{[-q]}{x^2 = 4} \rightarrow x = 2 \text{ on } x = -2 \text{ (on } x = \pm 2)$$

$$x^2 = 7 \rightarrow x = \sqrt{7} \text{ on } x = -\sqrt{7} \text{ (on } x = \pm \sqrt{7})$$

E.g. Solve (a)
$$3x^2 - 10 = 0$$

(b) $(2x+5)^2 = 17$

Sol: (a)
$$3x^2 - 10 \rightarrow 3x^2 = 10 \rightarrow x^2 = \frac{10}{3}$$

(b)
$$(2x+5)^2 = 17 \rightarrow 2x+5 = \sqrt{17}$$
 on $2x+5 = -\sqrt{17}$
 $x = \frac{-5+\sqrt{17}}{2}$ on $x = \frac{-5-\sqrt{17}}{2}$

on
$$x = \frac{-5 \pm \sqrt{17}}{2}$$

Monday, October 8, 2018 11:48

11:48 AM

Method of Completing the Square

 $\frac{\text{E.g.}}{x}$ Solve $x^2-6x-10=0$.

 $x^2 - 6x + 9 = 10 + 9$

(Take half of the coeff. of x.

Square it.

Add that to both sides)

maginary

 $(x-3)^2 = 19$

 \rightarrow $x-3=\pm\sqrt{19}$ \rightarrow $x=3\pm\sqrt{19}$

E.g. $x^2 + 8x + 18 = 0$. Solve this by completing the square.

 $x^2 + 8x + 16 = -18 + 16$

 $(x+4)^2 = -2 \rightarrow x+4 = \pm \sqrt{-2} = \pm 0\sqrt{2}$

7.4 Page 6