$$\frac{|E_{T_n}| \leq \frac{K(b-a)^3}{12n^2}}{|E_{T_n}| \leq \frac{K(b-a)}{12n^2}}$$
 upper bound for annex
where K is a number such that $|f''(x)| \leq K$
for all x in $[a,b]$; i.e.; K is an upper bound
for $|f''(x)|$ on $[a,b]$.
(In practice, we can take K to be the maximum of
 $|f''(x)|$ on $[a,b]$)

Tuesday, October 9, 2018 9:43 AM

For Simpson's rule, the error bound formula is:

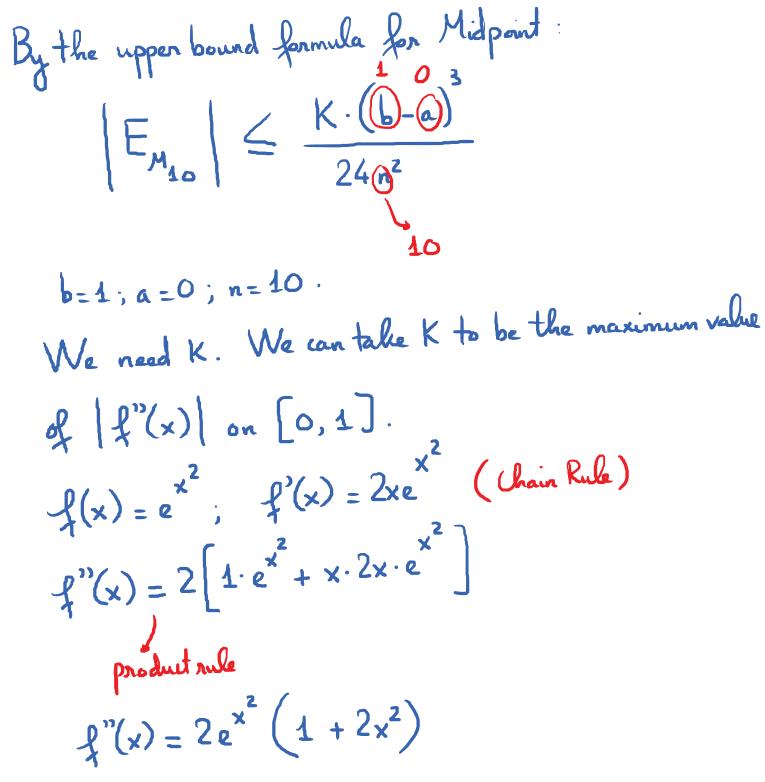
$$\begin{aligned} \left| E_{Sn} \right| &\leq \frac{K(b-a)^{5}}{180 n^{4}} \end{aligned}$$
Where K is a number such that $|f^{(4)}(x)| \leq K$
for all x in $[a, b]$. (In practice, we can just
take K = max $|f^{(4)}(x)|$)
 $[a, b]$
E.g. Estimate $\int_{a}^{a} e^{x^{2}} dx$.
(1) Use the midpoint rule for n = 10 to estimate this
integral $\longrightarrow M_{10}$.

(2) Find an upper bound for the error when using M10 to estimate the integral; i.e., find an upper bound for E_M.

$$\Delta x = \frac{1}{10} = 0.1$$

$$M_{10} = 0.1 \cdot \left[f(0.05) + \dots + f(0.95) \right]$$

$$M_{10} \approx 1.460393$$
(2) Find an upper bound for $E_{M_{10}}$



Tuesday, October 9, 2018 10:03 AM

Goal: To find K, we need to find the max value
of
$$f''(x) = 2e^{x^2}(1+2x^2)$$
 on $[0,1]$
subscription on $[0,1]$, to find the
line f'' is an increasing function on $[0,1]$, to find the
maximum value, we just need to play in the night
endpoint.
So, max $f''(x) = f''(1) = 2e \cdot (3) = 6e \cdot (0,1]$
So, $|E_{M_{10}}| \leq \frac{6e \cdot (1)^3}{24 \cdot (10)^2} \approx 0.0067$
error of your approximation cannot
exceed this number.

E.g. Using the formula for the bound for the error in Simpson's method to find the smallest value of n such that the Simpson approximation Sn for the integral $\int \frac{1}{x} dx$ is accurate to within 0.0001?