
F.1 and F.2 Parametric curves and Calculus of Parametric
Curves
What is a parametric curve?

$$y = f(x)$$

 $t=0$ Point (x,y)
 0 x
x and y coordinates of a point moving along on this
curve change with respect to time.
Introduce the variable t for time.
 b Both x and y are functions of time t.
 $(x = x(t))$ These 2 equations are called the
 $(y = y(t))$

Tuesday, November 20, 2018 8:12 AM Eq. Given the parametric equations $\begin{cases} x = x(t) = t + 1 \\ y = y(t) = t^{2} - 2t . \end{cases}$ These equations describe a curve in the xy-plane. (t is called the parameter) x = t + 1 $y = t^2 - 2t$ Point (x, y) t (1,0) 0 0 1 1 (2, -1)2 -1 2 (3,0) 3 0 (4,3)3 3 4 (5, 8)8 5 4

Tuesday, November 20, 2018 8:22 AM

$$x = t + 1 \longrightarrow t = x - 1$$

$$y = t^{2} - 2t \longrightarrow y = (x - 1)^{2} - 2(x - 1)$$

$$y = x^{2} - 2x + 1 - 2x + 2$$

$$y = x^{2} - 4x + 3 \longrightarrow curve in a ponabela$$

$$a = 1 > 0 \longrightarrow ponabela points upward.$$

$$Ventex: x - ventex := -\frac{b}{2a} = 2$$

$$y - ventex := f(2) = -1$$

$$Ventex (2, -1)$$

$$F:g: Given the parametric equations:$$

$$x = cos(t)$$

$$0 \le t < 2\pi.$$

$$y = sin(t)$$

$$Q: Use elimination of parameter to identify this curve.$$

$$x^{2} + y^{2} = cos^{2}(t) + sin^{2}(t) = 1$$

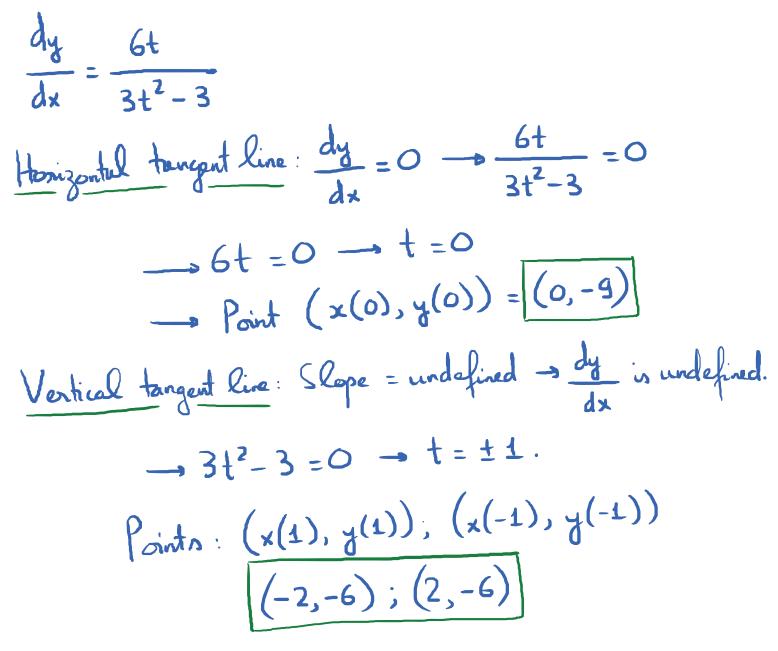
Tuesday, November 20, 2018 8:27 AM

Calculus of Parametric Curves

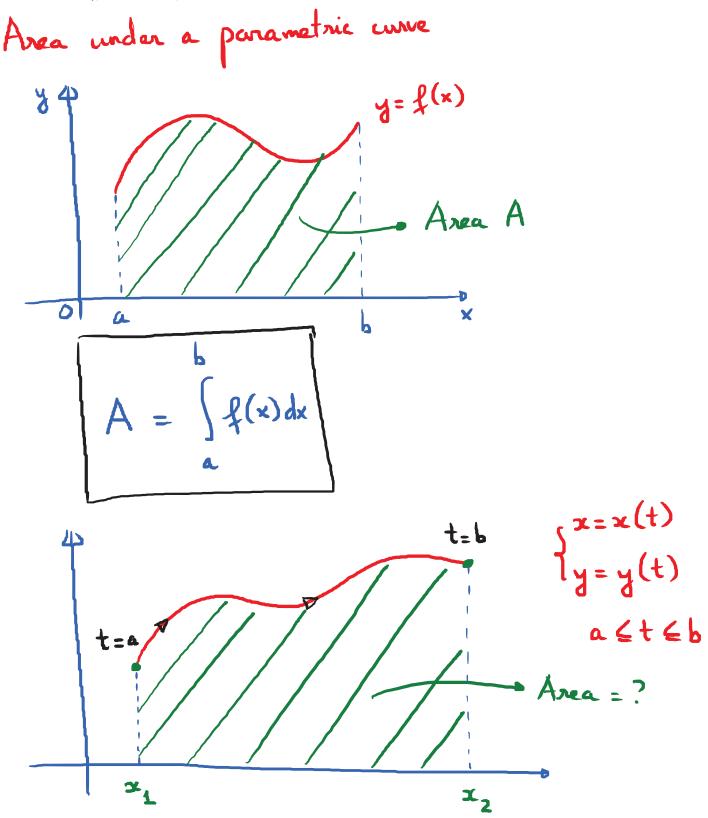
Tangent line Problem:
If a curve is given by the equation
$$y = f(x)$$
, how
do we find the tangent line to the curve at the paint
where $x = a$?
 $f'(a) \longrightarrow$ Slope of tangent line at $x = a$.
Equation of tangent line: $y - f(a) = f'(a)(x - a)$
Now, the curve is given by
 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ Find tangent line at a point.

Tuesday, November 20, 2018 8:35 AM

E.g. Given the parametric curve:


$$\begin{cases} x = x(t) = t^{2} - 4t & ; -2 \leq t \leq 3. \\ y = y(t) = 2t^{3} - 6t & ; -2 \leq t \leq 3. \end{cases}$$

$$Q: Find the equation of the tangent line to this curve at the point where $t = 1$.
When $t = 1$: $x = -3$; $y = -4 \longrightarrow$ Point $(-3, -4)$.
Slope?


$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)} = \frac{6t^{2} - 6}{2t - 4}$$
Slope at $(-3, -4) = \frac{y'(1)}{x'(1)} = \frac{6 - 6}{2 - 4} = \frac{0}{-2} = 0$

$$t = 1$$
Equation of the tangent line at $(-3, -4)$: $y = -4$$$

Tuesday, November 20, 2018 8:42 AM

Tuesday, November 20, 2018 8:53 AM

