Section 1.3

Trigonometric Functions

 θ is any angle in standard position

P is any point (x, y) on the terminal side of the angle

r is the distance from the origin to the point P

Using the distance formula, we know that

 $r = \sqrt{x^2 + y^2}$ and r > 0

The six trigonometric functions are defined as follows

(sine)	(cosine)	(tangent)		
$\sin \theta = \frac{y}{r}$	$\cos \theta = \frac{x}{r}$	$\tan \theta = \frac{y}{x} \ (x \neq 0)$		
$\csc \theta = \frac{r}{y} (y \neq 0)$	$\sec \theta = \frac{r}{x} \qquad (x \neq 0)$	$\cot \theta = \frac{x}{y} \ (y \neq 0)$		
(cosecant)	(secant)	(cotangent)		

Example 1:

The terminal side of an angle θ in standard position passes through the point (-12, 5). Find the values of the six trigonometric functions.

Example 2:

The terminal side of an angle θ in standard position passes through the point $(-2\sqrt{3}, -2)$. Find the values of the six trigonometric functions.

 $\sin \theta =$

 $\cos \theta =$

 $\csc \theta =$

 $\sec \theta =$

NOTE: We can pick ANY point on the terminal side to find the values of the six functions.

For the following angle θ , show that the points (1, 2) and (2, 4) will give the same values for the six functions.

The terminal side of an angle θ in standard position passes through the point (1, 2). Find the function values.

 $\sin \theta = \cos \theta = \tan \theta =$

The terminal side of an angle θ in standard position passes through the point (2, 4). Find the function values.

 $\sin \theta = \cos \theta = \tan \theta =$

Example 3:

An equation of the terminal side of an angle θ in standard position is given with a restriction on x. Sketch the least positive such angle θ , and find the value of the six trigonometric functions of θ .

θ	sin $ heta$	cos θ	tan θ	cotθ	sec θ	csc θ
0°						
90°						
180°						
270°						

NOTE: Coterminal angles have the same trigonometric function values.

Example 4:

Find the indicated function values for the following.

a) sin(-270°) b) tan 1800° c) cot 540°

Example 5: Evaluate the following expressions.

a) $\tan 0^\circ - 6 \sin 90^\circ$

b) $\cos^2(-180^\circ) + \sin^2(-180^\circ)$