Section 3.1

Radian Measure

Radian measure enables us to treat the trigonometric functions as functions with domains (inputs) of REAL NUMBERS, rather than angles.

If θ is a central angle of a circle of radius r, and θ intercepts an arc of length s, then the radian measure of θ is found by,

$$\theta = \frac{s}{r}$$

An angle with its vertex at the center of a circle that intercepts an arc on the circle equal in length to the radius of the circle has a measure of **1 radian**.

How many radians represents a complete rotation?

Converting between degrees and radians

Example 1: Convert each degree measure to radians. Show as a multiple of π and give its decimal approximation.

a) 60° b) -135°	c) 325.7°
-----------------	-----------

Example 2: Convert each radian measure to degrees.

a) 2.92

NOTE: If no unit of measurement is specified for an angle, then the angle is understood to be in radians.

NOTE: A shortcut to convert radians to degrees: substitute 180° for π .

b)
$$\frac{\pi}{6}$$
 c) $\frac{13\pi}{3}$

Important degree measures and their radian equivalences

Reference angles are super easy to recognize for
the radian measures shown here.

$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$	Reference angle: $\frac{\pi}{6}$
$\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$	Reference angle: $\frac{\pi}{4}$
$\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$	Reference angle: $\frac{\pi}{3}$

θ	sin $ heta$	$\cos \theta$	$\tan \theta$	cotθ	$\sec\theta$	$\csc \theta$
$30^{\circ} = \frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
$45^\circ = \frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
$60^{\circ} = \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$

Example 3: Find the exact value of each expression without using a calculator.

a)
$$\tan \frac{2\pi}{3} = -----$$

Quadrant:

Reference Angle:

c)
$$\sin\left(-\frac{7\pi}{6}\right) =$$

Quadrant:

Reference Angle:

b)
$$\sec \frac{7\pi}{4} =$$

Quadrant:

Reference Angle:

e)
$$\sin\left(-\frac{14\pi}{3}\right) =$$

Quadrant:

Reference Angle:

You should be able to label each point on this circle with its exact radian measure. Remember that $\pi = 180^{\circ}$

Reference Angles in Radians:

For any angle θ (between 0 and 2π), we can find the reference angle α by using the following table.

Example: Find the reference angle for the following angles.

c) $\theta = 2.034443936$

d) $\theta = 5.9012$

