Section 3.3

The Unit Circle and Circular Functions

Recall that we previously defined the trigonometric functions as			
$\sin \theta = \frac{y}{r}$	$\cos\theta = \frac{x}{r}$	$\tan\theta=\frac{y}{x}$	
The unit circle is a circle with a radius of 1. On the unit circle, $r = 1$, so the definitions simplify to be:			
Recall that $s = r\theta$.		For any real number <i>s</i> represented by a directed arc on the unit circle,	
If $r = 1$, then the arclength $s = c$ (<i>s</i> is a real number)	heta radians.	$\sin s = y \qquad \cos s = x \qquad \tan s = \frac{y}{x}$	

 $\csc s = \frac{1}{y}$

 $\sec s = \frac{1}{x}$

 $\cot s = \frac{x}{y}$

Practice Labeling the Degrees, radians, and points on the unit circle from memory.

Can you label all of these values from memory in 5 minutes? Time yourself.

Example 1: Given that real number $s = -$	$-\frac{3\pi}{2}$,

find a) $\sin s$, b) $\cos s$, c) $\tan s$.

Example 2: Find the exact circular function values for each of the following.

Example 3: Find a calculator approximation for each circular function value. *Use RADIAN mode

a) sin 0.6109 b) cos(-1.1519) c) sec 2.8440

Example 4: Find the value of *s* in the interval $[0, \frac{\pi}{2}]$ that makes each statement true. *Use RADIAN mode

a) $\tan s = 0.2126$ b) $\csc s = 1.0219$

Example 5: Find the exact value of *s* in the given interval that has the given circular function value. Do not use a calculator.

a)
$$\left[\frac{\pi}{2}, \pi\right]; \cos s = -\frac{1}{2}$$

($-\frac{1}{2}, \frac{\sqrt{3}}{2}$)
($-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$)
($-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$)
($-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$)
($-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$)
($-\frac{\sqrt{3}}{4}, \frac{135^{\circ}}{4}$
($-\frac{\sqrt{3}}{2}, \frac{1}{2}$)
($-\frac{\sqrt{3}}{2}, -\frac{1}{2}$)
($-\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}$)

Example 6: Find the exact value of *s* in the given interval that has the given circular function value. Do not use a calculator.

Example 7: Find the approximate value of *s* in the given interval that has the given circular function value. Use a calculator.

