Section 3.3 The Unit Circle and Circular Functions

Recall that we previously defined the trigonometric functions as
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The unit circle is a circle with a radius of 1. On the unit circle, r = 1, so the definitions simplify to be:
Circular Function Definitions

Recall that s = 76. For any real number s represented by a directed arc on the
unit circle,

If r = 1, then the arclength s = 0 radians.
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(s is a real number)
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Practice Labeling the Degrees, radians, and points on the unit circle from memory.
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Negative: Negative:
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Positive: {— ’ —} Positive:
Negative: Negative:

Can you label all of these values from memory in 5 minutes? Time yourself.



Example 1: Given that real number s = —37”,

find a)sins, b)coss, C) tan s.

Example 2: Find the exact circular function values for each of the following.
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Example 3: Find a calculator approximation for each circular function value. *Use RADIAN mode

a) sin0.6109 b) cos(—1.1519) C) sec2.8440

Example 4: Find the value of s in the interval [0, %] that makes each statement true. *Use RADIAN mode

a) tans = 0.2126 b) cscs = 1.0219

Example 5: Find the exact value of s in the given interval that has the given circular function value. Do not use
a calculator.

T 1
a) [E,TII]; coss = —-

b) [n, 3;”], tans = \g_g

C) [%,ZH]; sins = —g



Example 6: Find the exact value of s in the given interval that has the given circular function value. Do not use
a calculator.

a) [0,2m);sins = —?
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Example 7: Find the approximate value of s in the given interval that has the given circular function value. Use

a calculator.

d) [0,2m); sins = 0.82639
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e) [0,2m); cos s= 0.42378
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f) [0,2m); tan s= 2.75
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