Section 4.1 Graphs of the Sine and Cosine Functions

The sine and cosine functions are both called **periodic functions** because their output values repeat themselves. The output values of the basic functions $y = \sin x$ and $y = \cos x$ go through a complete cycle every 2π radians, so they are periodic functions with a **period** of 2π .

The graph of the SINE Function $y = \sin x$

Key points on the graph for one period of y = sin x						
<i>x</i> (angle in radians)	$y = \sin x$	(angle, ratio)				
0	$y=\sin(0)=0$	(0,0)				
$\frac{\pi}{2}$	$y = \sin\left(\frac{\pi}{2}\right) = 1$	$\left(\frac{\pi}{2},1\right)$				
π	$y=\sin(\pi)=0$	(π, 0)				
$\frac{3\pi}{2}$	$y = \sin\left(\frac{3\pi}{2}\right) = -1$	$\left(\frac{3\pi}{2},-1\right)$				
2π	$y=\sin(2\pi)=0$	(2π, 0)				

Definitions:

- **Period:** horizontal length of the interval required to complete one full cycle
- **Amplitude:** vertical distance from the middle of the graph to the top and from the middle to the bottom.

OR

half the difference between the maximum and minimum values.

Summary of $y = \sin x$ Domain: $(-\infty, \infty)$ Range: [-1, 1]Period: 2π Amplitude: 1 The graph is symmetric with respect to the origin, so the function is odd. By definition of an odd function, $\sin(-x) = -\sin x$.

The graph of the COSINE Function

Key points on the graph for one period of y = cos x						
<i>x</i> (angle in radians)	$y = \cos x$	(angle, ratio)				
0	$y = \cos(0) = 1$	(0,1)				
$\frac{\pi}{2}$	$y = \cos\left(\frac{\pi}{2}\right) = 0$	$\left(\frac{\pi}{2},0\right)$				
π	$y = \cos(\pi) = -1$	(π, -1)				
$\frac{3\pi}{2}$	$y = \cos\left(\frac{3\pi}{2}\right) = 0$	$\left(\frac{3\pi}{2},0\right)$				
2π	$y = \cos(2\pi) = 1$	(2 <i>π</i> , 1)				

Graphing $y = a \sin x$ or $y = a \cos x$

"a" for us will represent the value that is multiplied times the outside of the function. If "a" is negative, the basic shape will flip vertically.

Amplitude of a periodic function: vertical distance from the middle of the graph to the top and from the middle to the bottom.

For the graph of $y = a \sin x$ or $y = a \cos x$ the **amplitude will be** |a|.

Amplitude is always considered to be positive!

erupii .			. 1	У			
<i>x</i> (angle in radians)	$y = 2 * \sin x$	(x, y)	-	-			
0	$y = 2\sin(0) = 2*0$	(0,0)					
$\frac{\pi}{2}$	$y = 2\sin\left(\frac{\pi}{2}\right) = 2 * 1$	$\left(\frac{\pi}{2},2\right)$	10		- π 2	 $\frac{3\pi}{2}$	2 π
π	$y = 2\sin(\pi) = 2 * 0$	(π, 0)			2	2	
$\frac{3\pi}{2}$	$y = 2\sin\left(\frac{3\pi}{2}\right) = 2*(-1)$	$\left(\frac{3\pi}{2},-2\right)$		_			
2π	$y = 2\sin(2\pi) = 2*0$	(2 <i>π</i> ,0)		,			

Graph $y = 2 \sin x$ over a one-period interval.

Graph $y = -3 \cos x$ over a one-period interval.

<i>x</i> (angle in radians)	$y = -3 * \cos x$	(x , y)		- -				
0	$y = -3\cos(0) = -3 * 1$	(0,-3)						
$\frac{\pi}{2}$	$y = -3\cos\left(\frac{\pi}{2}\right) = -3 * 0$	$\left(\frac{\pi}{2},0\right)$	-					
π	$y = -3\cos(\pi) = -3*(-1)$	(π,3)	0		<u>π</u> 2	π	$\frac{3\pi}{2}$	2π
$\frac{3\pi}{2}$	$y = -3\cos\left(\frac{3\pi}{2}\right) = -3*0$	$\left(\frac{3\pi}{2},0\right)$						
2π	$y = -3\cos(2\pi) = -3*1$	(2π, -3)		Ţ				

Changes made to the outside of the function affect the graph vertically. In other words, it changes the y-values used for the graph.

Example 1: Graph $y = 4 \cos x$ over a one-period interval.

Example 2: Graph $y = -\frac{2}{3}\sin x$ over a one-period interval.

Amplitude:

Period:

Graphing $y = \sin bx$ or $y = \cos bx$

The coefficient "b" represents the number of times sine and cosine will complete a cycle between 0 to 2π .

Graph $y = \sin 2x$	over a two-per	riod interval.
---------------------	----------------	----------------

x (angle in radians)	$y = \sin(2 * x)$	(x, y)					
0	$y = \sin(2 * 0) = \sin(0) = 0$	(0,0)	↓ <i>Y</i>				
$\frac{\pi}{4}$	$y = \sin\left(2 * \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2}\right) = 1$	$\left(\frac{\pi}{4},1\right)$					
$\frac{\pi}{2}$	$y = \sin\left(2 * \frac{\pi}{2}\right) = \sin(\pi) = 0$	$\left(\frac{\pi}{2},0\right)$					
$\frac{3\pi}{4}$	$y = \sin\left(2 * \frac{3\pi}{4}\right) = \sin\left(\frac{3\pi}{2}\right) = -1$	$\left(\frac{3\pi}{4}, -1\right)$	-0				
π	$y = \sin(2 * \pi) = \sin(2\pi) = 0$	(π, 0)		<u>π</u> 2	π	<u>3π</u> 2	2 π
$\frac{5\pi}{4}$	$y = \sin\left(2 * \frac{5\pi}{4}\right) = \sin\left(\frac{5\pi}{2}\right) = 1$	$\left(\frac{5\pi}{4},1\right)$					
$\frac{3\pi}{2}$	$y = \sin\left(2 * \frac{3\pi}{2}\right) = \sin(3\pi) = 0$	$\left(\frac{3\pi}{2},0\right)$	÷				
$\frac{7\pi}{4}$	$y = \sin\left(2 * \frac{7\pi}{4}\right) = \sin\left(\frac{7\pi}{2}\right) = -1$	$\left(\frac{7\pi}{4},-1\right)$					
2π	$y = \sin(2 * 2\pi) = \sin(4\pi) = 0$	(2π, 0)					

If we change the coefficient of *x* that will change the period of the function.

The input angle now is "bx."

Since, the coefficient "b" represents the number of times sine and cosine will complete a cycle between 0 to 2π ,

The period of any sine or cosine function is $\frac{2\pi}{h}$

Changes made to the inside of the function affect the graph horizontally. In other words, it changes the x-values used for the graph.

To find the 5 x-values that will be used for 1 period,

Step 1. Determine the period $\frac{2\pi}{b}$. (Recall that is the required horizontal distance to complete one cycle.)

Step 2. Find the equal distance between the 5 x-values. Divide the period by 4. (Recall that the cycles are always divided into 4 equal parts.)

Step 3. Find all 5 of the x-values used as key points for the graph. Determine the starting x-value of the graph. Add the value from Step 2 to the starting x-value. Continue adding the value found in Step 2 to x-value until you have found all 5 x-values of the cycle.

Example 1: Graph $y = \cos 4x$ over a one-period interval.

Amplitude:

Period:

Example 2: Graph $y = \sin \frac{1}{3}x$ over a two-period interval.

Amplitude:

Period:

Graphing $y = a \sin bx$ or $y = a \cos bx$

- 1) Find all 5 x-values used as key points for the graph. (Divide the period by 4. Add that distance to the starting x-value, then continue adding that distance to each x-value until all 5 of the x-values are found.)
- 2) Draw in the basic shape for sine or cosine using the amplitude to determine the vertical distance from the middle of the graph.

Example 1: Graph $y = 4 \sin 3x$ over a one-period interval.

Amplitude:			
Period:			
equal distance between the 5 x-values:			

Example 2: Graph $y = \frac{1}{2}\cos(-4x)$	over a two-period interval.
--	-----------------------------

Amplitude:

Period:

Period:		
equal distance between the 5 x-values:		

Example 3: Graph $y = -5 \cos \frac{1}{2}x$ over a one-period interval.

Example 4: Graph
$$y = \frac{2}{3} \sin \left(-\frac{\pi}{4}x\right)$$
 over a two-period interval.

Amplitude:

Period:

5 x-values:

equal distance between the