Section 4.3 Graphs of the Tangent and Cotangent Functions

The output values of the basic functions $y = \tan x$ and $y = \cot x$ go through a complete cycle every π radians, so they are periodic functions with **period** π .

The graph of the TANGENT Function

Summary of $y = \tan x$ Domain: $\{x | x \neq (2n + 1)\frac{\pi}{2}, where n \text{ is any integer}\}$ Range: $(-\infty, \infty)$ Period: π Vertical Asymptotes: at x-values of the form $x = (2n + 1)\frac{\pi}{2}$ (at all ODD multiples of $\frac{\pi}{2}$) The graph is symmetric with respect to the origin, so the function is odd.

By definition of an odd function, tan(-x) = -tan x.

x (angle in	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$\frac{\text{radians})}{y = \sin x}$	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1
$y = \cos x$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
$y = \tan x$					

The graph of the COTANGENT Function

Summary of $y = \cot x$

Domain: $\{x | x \neq n\pi, where n is any integer\}$

Range: $(-\infty, \infty)$

Period: π

Vertical Asymptotes: at x-values of the form $x = n\pi$ (at all multiples of)

The graph is symmetric with respect to the origin, so the function is odd. By definition of an odd function, $\cot(-x) = -\cot x$.

x (angle in	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	3π	π
radians)	0	4	2	4	π
$y = \cos x$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1
$y = \sin x$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
$y = \cot x$					

Graphing $y = c + a \tan[b(x - d)]$ $y = c + a \cot[b(x - d)]$

1) <u>Determine the **x-values**</u> of the asymptotes <u>at the **start and end**</u> of the period: Set up a compound inequality by placing the argument between the original start and end points. Solve the inequality for x.

-For tangent: $-\frac{\pi}{2} < agrument < \frac{\pi}{2}$ -For cotangent: $0 < agrument < \pi$

2) Determine the remaining x-values. Determine the period $\frac{\pi}{b}$. Divide by 4. Add the equal distance to the starting x-value found in step 1.

- 3) "c" Vertical Shift: Draw a dotted horizontal line for the new middle.
- 4) "a" Stretch the graph vertically from the middle "a" units. If "a" is negative, the graph flips vertically. (NOTE: Tangent and Cotangent do not have an "amplitude")
- 5) Draw the basic shape of tangent or cotangent within the asymptotes.

Graph each of the following over a one period interval.

a) $y = \tan \frac{1}{2}x$

Period:
$$\frac{\pi}{b}$$

b) $y = 2 \cot x$

Period: $\frac{\pi}{b}$

c) $y = 1 - 2 \tan x$

Period:

d) $y = \cot\left(3x + \frac{\pi}{4}\right)$

Period: