$\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\cos(A - B) = \cos A \cos B + \sin A \sin B$

NOTE: Angles A and B can be measured in degrees or radians.

We know the exact trigonometric function values of several angles on the unit circle.

 $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, etc.$ $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, etc.$ By forming the sums and differences of these angles, we can find exact function values of angles that are not commonly known.

For example, we know the exact function values for 30° and 45° . Using these identities we can find the exact cosine value of their sum and of their difference.

Sum

 $\cos(30^{\circ} + 45^{\circ}) =$

Difference

 $\cos(30^\circ - 45^\circ) =$

Example 1: Find the *exact* value of each expression.

a) cos 195°

b) $\cos\left(-\frac{\pi}{12}\right)$

c) $\cos 173^{\circ} \cos 128^{\circ} + \sin 173^{\circ} \sin 128^{\circ}$

d) $\cos\frac{\pi}{18}\cos\frac{\pi}{9} - \sin\frac{\pi}{18}\sin\frac{\pi}{9}$

Example 2: Given information about two different angles *s* and *t*, we can find function values of their sum s + t or difference s - t.

a) Suppose that $\sin s = \frac{3}{5}$ and $\cos t = -\frac{12}{13}$. If both *s* and *t* are in quadrant II, find $\cos(s + t)$.

b) Suppose that $\sin s = \frac{2}{3}$ and $\sin t = -\frac{1}{3}$. If both *s* is in quadrant II and *t* is in quadrant IV, find $\cos(s - t)$.