Section 6.3

In this section, we discuss trigonometric equations that involve functions of half-angles and multiples of angles. Solving these equations often requires adjusting solution intervals to fit given domains.

NOTE:
$$\frac{\cos 2\theta}{2} \neq \cos \theta$$

When solving an equation with $n\theta$ as the input angle, we need to use adjusted solution intervals or identities.

How to solve equations for θ if given multiples of angles, $n\theta$

- 1. **Isolate** $\cos n\theta$, $\sin n\theta$, etc.
- 2. Solve for $n\theta$ within the adjusted solution interval. Multiply each part of the original inequality by n.
- 3. Divide by n to solve for θ .

Adjusting solution intervals to fit given domains:

In order to solve for θ , $0^{\circ} \le \theta < 360^{\circ}$, we must first solve for $n\theta$ over the interval $n * 0^{\circ} \le n\theta < n * 360^{\circ}$.

If the equation contains an input angle of 2θ and we are asked to solve the equation for θ over the original interval [0°, 360°) $0^\circ \le \theta < 360^\circ$, then we must first solve for 2θ over the interval [0°, 720°) also written as $0^\circ \le 2\theta < 720^\circ$.

If the equation contains an input angle of $\frac{1}{2}\theta$ or $\frac{\theta}{2}$ and we are asked to solve the equation for θ over the original interval $[0^\circ, 360^\circ)$ $0^\circ \le \theta < 360^\circ$, then we must first solve for $\frac{1}{2}\theta$ or $\frac{\theta}{2}$ over the interval $[0^\circ, 180^\circ)$ also written as $0^\circ \le \frac{\theta}{2} < 180^\circ$

If the equation contains an input angle of 3θ and we are asked to solve the equation for θ over the original interval [0°, 360°) $0^{\circ} \le \theta < 360^{\circ}$, then we must first solve for 3θ over the interval ______ **Example 1**: Solve for θ : $\cos 2\theta = \frac{\sqrt{3}}{2}$ over the interval $[0^\circ, 360^\circ)$

1. **Isolate** $\cos n\theta$.

2. **Solve for** *n* θ within the adjusted solution interval of _____

3. Divide by *n* to solve for θ .

Let's prove that these solutions really do work in the original equation, $\cos 2\theta = \frac{\sqrt{3}}{2}$ over the interval [0°, 360°). $\theta = 15^{\circ}$, 165°, 195°, 345°. 1. Isolate _____

2. Solve for _____ with adjusted interval of _____

3. Divide by 3. (NOTE: Dividing by 3 is the same as multiplying by the reciprocal $\frac{1}{3}$)

Example 3: Solve $\sqrt{2} \sin 3x - 1 = 0$

for all solutions in radians.

1. Isolate _____

2. Solve for <u>all solutions</u> in radians. (NOTE: Since we are already asked to find all coterminal angles, we don't adjusting solution intervals)

3. Divide all terms by 3. (NOTE: Dividing by 3 is the same as multiplying by the reciprocal $\frac{1}{3}$)

Example 4: Solve $2\sin\frac{x}{2} = 1$ over the interval $[0, 2\pi)$

1. Isolate _____

2. Solve for *nx* within the adjusted solution interval of ______

3. Divide by *n* to solve for *x*. (NOTE: Dividing by $\frac{1}{2}$ is the same as multiplying by the reciprocal $\frac{2}{1}$)

Example 5: Solve
$$\cos\frac{\theta}{2} = \sqrt{2} - \cos\frac{\theta}{2}$$

Example 6: Solve $2\sqrt{3}\sin\frac{x}{2} = 3$ for all solutions.

Using Double Angle Identities

Example 9: Solve $\sin 2\theta = \sin \theta$ over the interval [0, 360°)

Example 10: Solve $\cos 2x = 1 - \sin x$ over the interval $[0, 2\pi)$