Section 7.1 Oblique Triangles and the Law of Sines

Congruence Axioms (Information that is needed to describe a unique triangle.)

If we know these 3 parts of a triangle in this order,

then we know for sure exactly what the other parts must be.

Side-Angle-Side (SAS)	If two sides and the included angle of one of the triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent.
Angle-Side-Angle (ASA)	If two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent.
Side-Side-Side (SSS)	If the three sides of one triangle are equal, respectively, to three sides of a second triangle, then the triangles are congruent.

NOTE: AAA could describe infinitely many triangles.

Also, SSA or ASS does not guarantee a unique triangle, as we will see in Section 7.2 when we discuss this ambiguous case.

A triangle that is not a right triangle is called an **oblique triangle.** We can "solve" an oblique triangle, that is, we can determine the measure of all its angles and the lengths of all of its sides, if **at least the length of ONE SIDE is known along with ANY two other measures.**

There are four possible cases:

Data Required for Solving Oblique Triangles		Requires use of
CASE 1:	One side and two angles are known (SAA or ASA)	The Law of Sines (Section 7.1)
CASE 2:	Two sides and one angle not included between the two sides are known (SSA.) This case may lead to more than one triangle.	The Law of Sines (Section 7.2) *Considers the "ambiguous case" that leads to two possible triangles*
CASE 3:	Two sides and the angle included between the two sides are known (SAS).	The Law of Cosines (Section 7.3)
CASE 4:	Three sides are known (SSS)	

CASE 1: SAA

Solve triangle ABC if $A = 28.8^{\circ}$, $C = 102.6^{\circ}$ and c = 25.3 in.

CASE 1: ASA

Solve triangle ABC if $B = 38^{\circ} 40'$, a = 19.7 cm, and $C = 91^{\circ}40'$.