1.4. Using the Definitions of Trig Functions Monday, January 28, 2019 10:22 AM

Keciprocal Identities

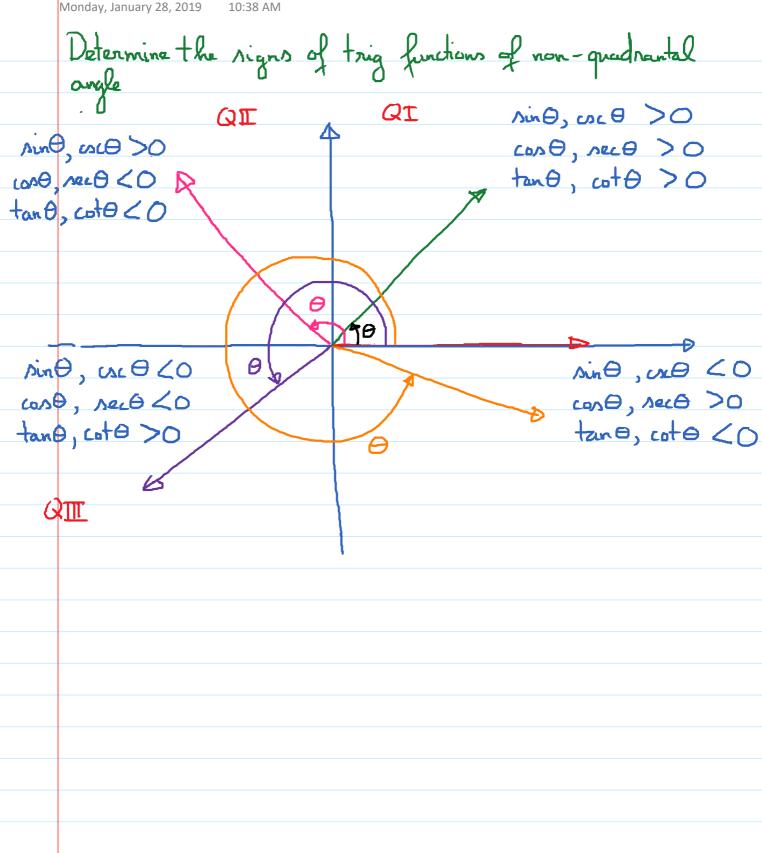
$$\sin\theta = \frac{1}{\cos\theta}$$
; $\cos\theta = \frac{1}{\cos\theta}$; $\tan\theta = \frac{1}{\cot\theta}$

$$csc\theta = \frac{1}{sin\theta}$$
; $sec\theta = \frac{1}{cos\theta}$; $cot\theta = \frac{1}{tan\theta}$

E.g. Given:
$$\cos \Theta = \frac{2}{\sqrt{20}}$$
. Find $\sec \Theta$

$$Aec\Theta = \frac{\sqrt{20}}{2} = \frac{2\sqrt{5}}{2} = -\sqrt{5}$$

$$Aec\Theta = -\sqrt{5}$$



$$sin(-115^{\circ}) < 0$$
, $cos(-115^{\circ}) < 0$
 $tan(-115^{\circ}) > 0$

Which anadrant does the angle belong to? QII

Eg. coto <0, seco <0, o is in QI.

E.g. cost >0, sect >0 _ Dis in QI on QIV

Pythagorean Identities:

$$\sin^2\theta + \cos^2\theta = 1$$

 $\sin^2\theta = 1 - \cos^2\theta$

 ∞ (6 2 0 = 1 - 2 0)

Monday, January 28, 2019 11:04 AM

$$\tan^2\theta = \sec^2\theta - 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\sec^2\theta - \tan^2\theta = 1$$

$$\cot^2\theta + 1 = \cot^2\theta$$

$$\cot^2\theta - \cot^2\theta = 1$$

Quotient Identities:

$$tan \theta = nin \theta$$
; $cot \theta = con \theta$
 $con \theta$
 $sin \theta$

E.g. Given:
$$cos\theta = \frac{4}{5}$$
 and θ is in OIV
Find $sin\theta$

$$\sin^2\theta = 1 - \cos^2\theta = 1 - \left(\frac{4}{5}\right)^2 = \frac{1.25}{1.25} = \frac{16}{25}$$

$$\sin^2\theta = \frac{9}{15} \qquad \sin\theta = \pm \frac{3}{5}$$

Since 6 is in QTV, sin & < 0.

So,
$$\sin\theta = -\frac{3}{5}$$

E.g. Given: $\sin\theta = \frac{1}{2}$ and θ is in QII.

Find ton O.

Sol: * Find cos & from Pythagonean identities:

$$\cos^2\theta = 1 - \sin^2\theta = 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4}$$

$$\omega_{\lambda}^{2}\theta = \frac{3}{4} \rightarrow \omega_{\lambda}\theta = \pm \sqrt{3}$$

Since
$$\Theta$$
 is in QII , $\cos \theta = -\frac{\sqrt{3}}{2}$

* Find tant from Quotient Identities:

$$\frac{1}{2} + \cos \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{2} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{2} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{$$

E.g.
$$cos\theta = -\frac{\sqrt{3}}{2}$$
; $tan\theta > 0$

Find the remaining trig function values of O.

$$\frac{\text{Sol}:}{\sin^2\theta - 1 - \cos^2\theta - 1 - \left(-\frac{\sqrt{3}}{2}\right) - 1 - \frac{3}{4}}$$

$$\sin^2\theta = \frac{1}{4}$$
 \Rightarrow $\sin\theta = \pm \frac{1}{2}$

$$\theta$$
 is in $Q \coprod \int \sin \theta = -\frac{1}{2}$.

$$CAC\theta = -2$$
 $ABC = -2 \cdot \frac{13}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$

(Reciprocal)

(Reciprocal)

(Reciprocal)

tan
$$\Theta = \frac{\text{Nin}\Theta}{\cos \Theta} = \frac{\frac{1}{2}}{\sqrt{3}} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$tan \theta = \frac{\sqrt{3}}{3}$$
 $cot \theta = \frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{3}$

Note: If we know the value of 1 trig function of 0 and wa know location of Q, then we can find the rest of them. Monday, January 28, 2019 11:37 AM

The Rouse Value	a of Tric hinchans	(the output values)
ď	t was to	
Function	Range	

Range

$sin\theta$, $con\theta$	$\begin{bmatrix} -1,1 \end{bmatrix}$

$$\triangle ABCB$$
, USCB $\left(-\infty, -1\right] \cup \left[1, \infty\right)$

$$tan\theta$$
, $cot\theta$ $(-\infty,\infty)$

$$E.g.$$
 $\cos\theta = -1.9.$ \rightarrow $\cos n' + make sense.$