3.1. Radian Measures Wednesday, February 13, 2019 10:27 AM ۲° Divide the incle into 360 equal parts central angle = 1° (incle with radius = 2 inches 1 Docion meanure an arc with length = R 2 s measure of this central angle R=2is exactly 1 radian. measure of this central angle is 2 radians R = 2 \Rightarrow measure of this central angle in $\frac{3}{2} = 1.5$ radians. R=z

Wednesday, February 13, 2019 10:39 AM

Radius = R.; arc length = s מ In radian, what is the measure θ of the central angle O in radian $i_{0} \Theta = \frac{n}{R}$ 1=2πR $S_{0}, \Theta = \frac{\Lambda}{R} = \frac{2\pi R}{R} = 2\pi$ The central angle which is a complete notation has measure 27 (radians) So, 360° = 211 rudians 180° - The radian -3 $\frac{1}{180} = \frac{\pi}{180}$ radians $\frac{1}{\pi}$ radian $= \frac{180}{\pi}$ degrees

Wednesday, February 13, 2019 10:51 AM

To convert from multiply by TI 180 , radian degree multiply by 180 degree radian Ex. Convert the following angles to radians b) 45° ງດີ α 30° <u>π</u> 6 60° (d)<u>π</u> 3 <u>п</u> 2 <u>π</u> 4 $\begin{pmatrix} 1 \\ 1 \\ 3n \\ 4 \end{pmatrix}$ e 120° $\frac{2\pi}{1}$ Ex. Convert the following angles to degrees (<u>β</u> 7π 6 $\bigcirc \frac{5\pi}{6} \cdot \frac{180}{\pi}$ $\bigcirc \frac{11\pi}{4}$ 210° 330° 150° $e \frac{5\pi}{2}$ $\frac{4n}{4}$ 225 315 135°

Wedness, Later 12, 2020

$$90^{-\frac{\pi}{2}} = 60^{-\frac{\pi}{2}} = \frac{\pi}{4}$$

 $150^{2} = \frac{5\pi}{6}$
 $-180^{2} = \pi$
 $210^{2} = \frac{7\pi}{6}$
 $210^{2} = \frac{7\pi}{6}$
 $10^{2} = 0$
 $330^{2} = \frac{\pi}{6}$
 $210^{2} = \frac{7\pi}{6}$
 $\frac{1100}{2} = \frac{7\pi}{6}$
 $\frac{1100}{2} = \frac{7\pi}{6}$
 $\frac{11\pi}{6}$
 $\frac{7\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$
Reference angle: $\frac{\pi}{6}$
 $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
Reference angle: $\frac{\pi}{4}$
 $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$
 $\frac{\pi}{4} = \frac{60^{2}}{2} = \frac{1100}{2}$
 $\frac{1000}{2} = \frac{1000}{2} = \frac{1000$

Wednesday, February 13, 2019 11:21 AM

E.g. Find the exact value a tan 211 Reference angle: $\frac{\pi}{2}$ ten $\frac{\pi}{3} = \sqrt{3}$ Quadrant : II _____ tan $\frac{2n}{2} = -\sqrt{3}$ b sec 7n Reference angle: The sec TT = 12 Quadrant: IV_____, sec In = 12 $(C) \sin\left(-\frac{7\pi}{2}\right)$ Cotenninal: $-\frac{7\pi}{6} + 2\pi = \frac{5\pi}{6}$ Reference: $\frac{\pi}{4}$ - $\sin \frac{\pi}{4} = \frac{1}{2}$ Quadrant: $\sin\left(-\frac{2\pi}{4}\right) = \frac{1}{2}$ $\left(\frac{1}{2} \cos \left(-\frac{1}{2} \frac{4\pi}{2} \right) \right)$ coterminal: $-\frac{14\pi}{3} + 3 \cdot 2\pi = -\frac{14\pi}{3} + 6\pi = \frac{4\pi}{3}$ reference: $\frac{\pi}{3}$ -, $\cos \frac{\pi}{3} = \frac{1}{2}$

Wednesday, February 13, 2019 11:29 AM

Quadrant: $\Pi : \cos\left(-\frac{14\pi}{3}\right) = -\frac{1}{2}$ (1) $\cos(3\pi) = -1$ $cos(k\pi)$ -1 if kinodd 1 if kinewen $con(2019\pi) = -1$ $\omega n (2020\pi) = 1$ sin(krz) = 0 Formula for finding reference angle of Θ in $[0, 2\pi]$ 90 6' $\theta' = \pi - \theta$ θ' = θ θ 63 θ'= Θ - π $\Theta' = 2\pi - \Theta$