4.2 Translations of Graphs of Sine and Cosine.
Wednesday, February 27, 2019 10:29 AM Goal: We will learn how to graph functions of the y = a sin(bx-c) + dy = a cos(px - c) + dReminder:

Basic sine curve: y = sin xParied: 2π End: 2π Puttern: Intercept Max Intercept Min Intercept $(0,0) \quad (\frac{\pi}{2},1) \quad (\pi,0) \quad (\frac{3\pi}{2},-1) \quad (2\pi,0)$ Stant 1/4 period 1/2 p 3/4 p end Basic cosine curve: y = cosx (Amplitude = 1, p = 2TL) Pattern: Max Intercept Min Intercept Max

Amplitude: a); Period:
$$\frac{2\pi}{b}$$
 End: $\frac{2n}{b}$

When the angle bx-c goes from 0 to 211, the sine

and corina curves will go through 1 period.

To determine the interval for 1 period, we

Net bx-c=0 and $bx-c=2\pi$ and solve x.

$$x = \frac{c}{b}$$

$$x = \frac{c + 2\pi}{b} = \frac{c}{b} + \frac{2\pi}{b}$$

Interval for one period:
$$\begin{bmatrix} \frac{c}{b} \\ \frac{b}{b} \end{bmatrix}$$

The graph of y = a sin(bx-c) and y=acos(bx-c)

have the following characteristics:

Amplitude - al., Period - $\frac{2\pi}{b}$ End: $\frac{c}{b}$

The left and right endpoints of 1 period

can be determined by setting bx-c=0 and bx-c=21

and solve for x.

E.g. Sketch the graph of $y = \frac{1}{2} \sin \left(x - \frac{\pi}{3}\right)$ in 1 period.

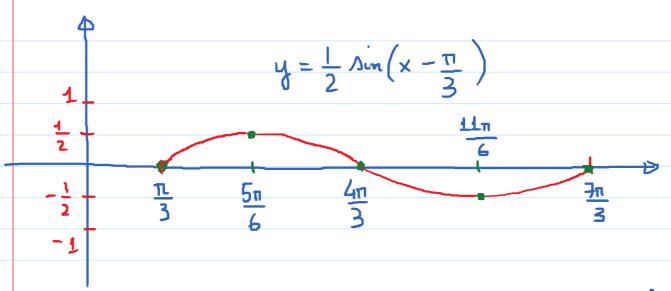
Amplitude = 1/2, Period = 2re

Endpoints of 1 pariod: $x = \frac{\pi}{3} = 0$, $x = \frac{\pi}{3} = 2\pi$

 $x = \frac{\pi}{3}$ (Start); $x = \frac{7\pi}{3}$ (End)

Intercept Max Intercept Min Intercept

 $\left(\frac{\pi}{3}, O\right) \left(\frac{5\pi}{6}, \frac{1}{2}\right) \left(\frac{4\pi}{3}, O\right) \left(\frac{11\pi}{6}, -\frac{1}{2}\right) \left(\frac{7\pi}{3}, O\right)$



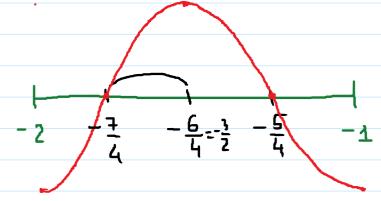
E.g. Find amplitude, period, 5 key points and shetch the graph of $y = 3\cos(2\pi x + 4\pi)$ in 1 period.

Amplitude =
$$3$$
; Period = $\frac{2\pi}{b}$ = $\frac{2\pi}{2\pi}$ = $\frac{1}{2\pi}$.

Endpoints:
$$2\pi x + 4\pi = 0$$
; $2\pi x + 4\pi = 2\pi$

$$x = -2$$
 ; $x = -1$.

Min Intercept Min
$$(-2,-3)$$
 $(-\frac{7}{4},0)$ $(-\frac{3}{2},3)$ $(-\frac{5}{4},0)$ $(-1,-3)$



Graph of
$$y = a \sin(bx-c) + d$$
 or $y = cos(bx-c) + d$

can be obtained from the graph of $y = a \sin(bx-c)$

on $y = cos(bx-c)$ by shifting the latter up on down d units.

(d $cos(bx-c)$)