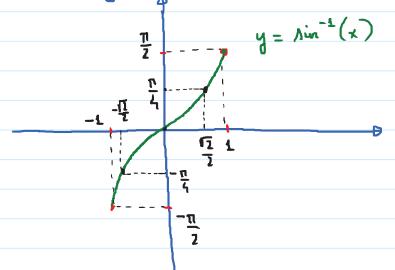
6. 1 - Inverse Trig Functions. Monday, April 15, 2019 10:18 AM

		z Function.		
The	Ln Verse /	sine function y	$f = \sin^{-1}(x)$	on y = anesin (x
		,	Nine of 2	nead or one of.
s. Sin	$\mathbf{L}(\mathbf{x})$	gives us the	angle y julio	se sine is equal.
		٥	() ()	l
X .				
In sl	unt,	$= \sin^{-1}(x)$	s equivalent to	$x = \sin(y)$
	_			
E.g.	/sun ($\left(\frac{4}{2}\right) = \frac{\pi}{6}$	e court sur (1	$\frac{1}{2}$
E.g.			- 1]
	Angle	Sine of Angle	#	Inverse Sine of #
		0	0	$\sin^{-1}(0) = 0$
	π	A.	4	
	<u>π</u>	2	2	$\int_{1}^{1} \int_{1}^{1} \frac{1}{2} = \frac{\pi}{6}$
	41	17	Ţ	1 -1 (5)
	<u> </u>	2	2	$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{\sqrt{2}}{2} \right) = \frac{\pi}{2}$
	l l			
	π 2	1		$nin^{-1} \left(1 \right) = \frac{\pi}{2}$



Range =
$$\begin{bmatrix} -1,1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\pi}{4} & \frac{\pi}{2} \\ -\frac{\pi}{2},-1 \end{bmatrix}$$

Do main: Restricted to
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Range of
$$y = \sin^{-1}(x)$$
 in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

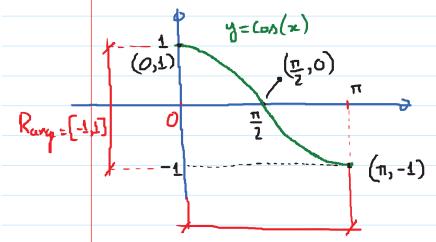
$$n \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 only

1 st an 4th greated

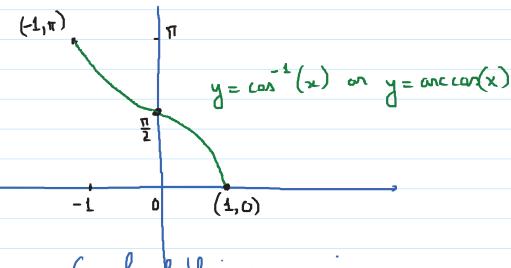
Note:
$$y = \sin^{-1}(x)$$
 gives us angles in $\left[-\frac{\pi}{2},\right]$

E.g. Find the exact value w/o a calculator:

- (a) $\sin^{-1}\left(-1\right)$ (b) $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$


Sol: (a) $\sin^{-1}(-1) = \text{angle in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ where sine is -1

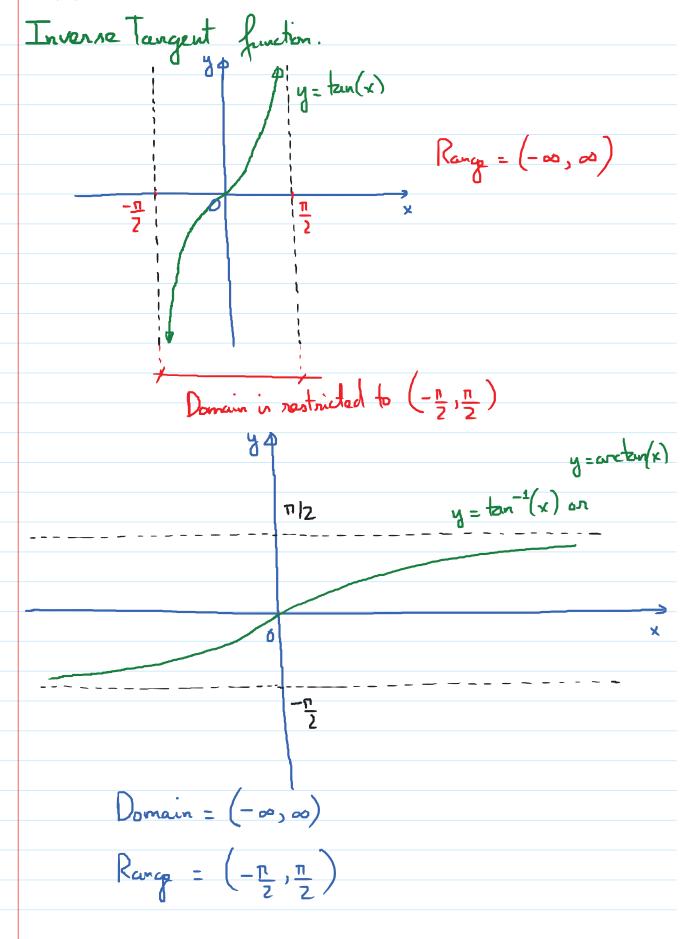
b) $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \text{angle in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whom sine is


 $\left(\frac{1}{2}\right) = angle in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose nine in

$$-\frac{1}{2}$$

Inverse Cosine.

Domain: Restricted to [0, 17]


Graph of the inverse cosine.

The function $y = cos^{-1}(x)$ or y = anccos(x) gives us the angle y in $[0, \pi]$ whose cosine is equal to ∞ .

In short, $y = cos^{-1}(x)$ is equivalent to cos(y) = x.

 $\frac{\text{E.g.}}{0} (a) \cos^{-1}\left(\frac{1}{2}\right) = \text{angle in } [0, \pi] \text{ whose cosine } = \frac{1}{2}.$ $= \frac{\pi}{3}$

(b) $\cos^{-1}\left(-\frac{1}{2}\right) = \text{argle in } \left[0, \pi\right] \text{ whose cosine } = -\frac{1}{2}$ $= \frac{2\pi}{3}$

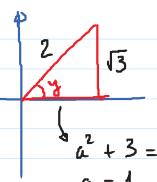
$$y = tan^{-1}(x)$$
 or $y = anctan(x)$ gives us the angle y in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is equal to x .

(QI on QIV)

In short,
$$y = ten^{-1}(x)$$
 is equivalent to $ten(y) = x$.

Eq. Find
$$tun^{-1}(1) = \frac{\pi}{4}$$

Find
$$tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$$

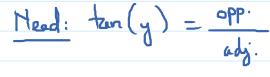

Algebraic Calculations with Inverse Trig Functions.

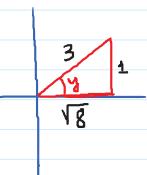
1 - method: calculator:

$$\frac{\sqrt{3}}{2}$$
 \rightarrow \sin^{-1} \rightarrow 60° \rightarrow \tan \rightarrow $\sqrt{3}$

2nd method: by hand.

Let
$$y = \operatorname{arcnin}\left(\frac{\sqrt{3}}{2}\right)$$
. Then: $\operatorname{sin}(y) = \frac{\sqrt{3}}{2}$ and $y \in \mathbb{R}$.

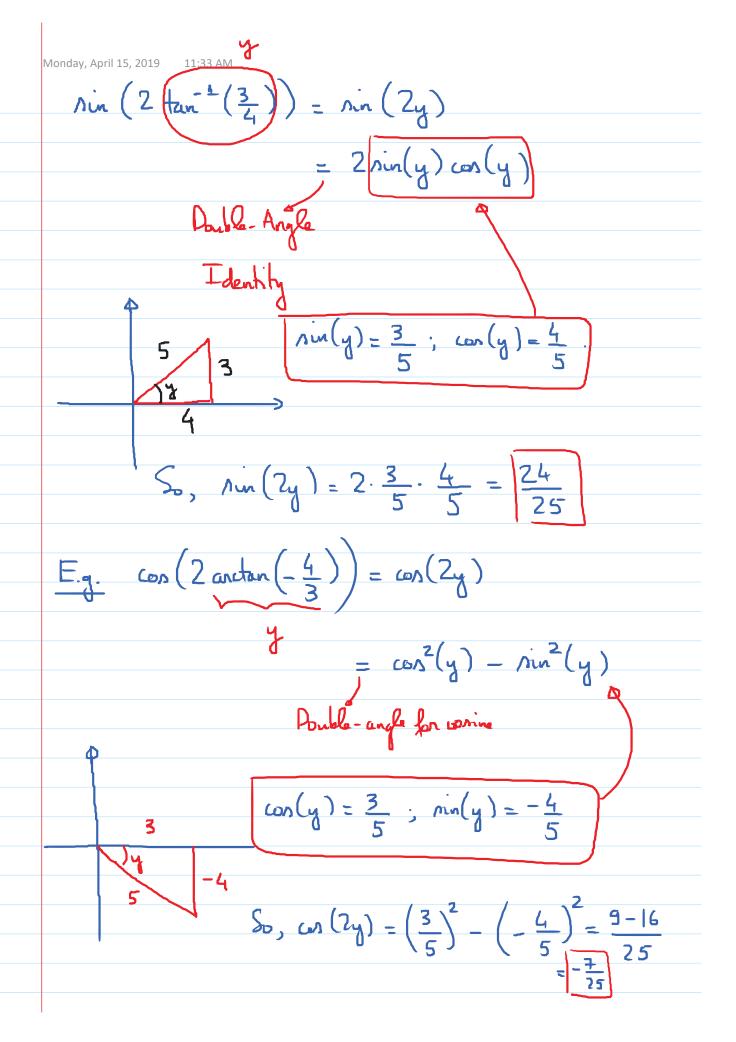



We need tan(y).

$$tan(y) = \frac{\sqrt{3}}{4} - \sqrt{3}$$
.

 $[\Xi_{X}]$. Find the exact value of $tan\left(ancsin\left(\frac{1}{3}\right)\right)$

Let
$$y = ancin(\frac{1}{3})$$
. Then $niny = \frac{1}{3}$; y is in QI


So,
$$tan(y) = \frac{1}{\sqrt{8}} \cdot \frac{\sqrt{8}}{\sqrt{8}}$$

$$= \frac{\sqrt{8}}{8} = \frac{2\sqrt{2}}{8}$$

$$= \frac{\sqrt{2}}{\sqrt{2}}$$

 E_{g} cos $(tan^{-1}(5))$

$$\int_{26}^{26} \int_{3}^{26} \int_{3}^{2$$

