
_ the y-values of the lay points will be

multiplied by 2

Intercept Max Intercept Min Intercept (0,0) $(\frac{\pi}{2},2)$ $(\pi,0)$ $(\frac{3\pi}{2},-2)$ $(2\pi,0)$

Max value = 2, Min Value = -2

Mex-Min = 2-(-2) = 2 - amplitude

(3) Graphs of functions of the form y = a sin(bx)or y = a cos(bx) (a, b are constants, assume b > 0)

Period: The period of y = a sin(bx) on y= a costox)

Period =
$$\frac{2\pi}{b}$$

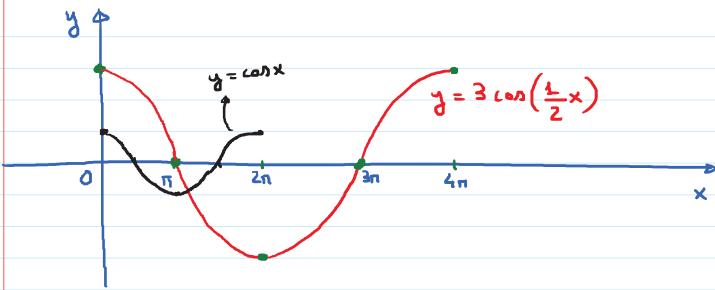
Why? $y = a \sin(bx)$ angle

When angle = 0 to ungle = 2π \Rightarrow 1 period

 $bx = 0 \Rightarrow bx = 2\pi$
 $x = 0 \Rightarrow x = \frac{2\pi}{b}$

[0, $\frac{2\pi}{b}$] \Rightarrow 1 period

E.g. Shetch the graph of $y = 3\cos(\frac{1}{2}x)$ in


1 period.

 $a = 3$; $b = \frac{1}{2}$. Amplitude = 3

Period = $\frac{2\pi}{2}$ = 4π

Max Intercept Min Intercept Max Shent $\frac{1}{4}p = \frac{1}{2}p = \frac{3}{4}p$. End

(0,3) $(\pi,0)$ $(2\pi,3)$ $(3\pi,0)$ $(4\pi,3)$

E.x. Given
$$y = -\frac{1}{2} \sin(\frac{\pi}{2}x)$$

Find amplitude, period, and 5 Key points in 1 period and

use them to shotch the function

Amplitude =
$$\left|a\right| = \left|-\frac{1}{2}\right| = \frac{1}{2}$$

Period =
$$\frac{2\pi}{b} = \frac{2\pi}{\pi} = 4$$

Intercept Min Intercept Max Intercept

$$(0,0) \quad (1,-\frac{1}{2}) \quad (2,0) \quad (3,\frac{1}{2}) \quad (4,0)$$
Stant $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{3}{$