Note: Polynomial functions, Rational functions,

Radical function, Log functions, Exp functions are

continuous at every point in their domain

 E_{g} $f(x) = x^{2019} - 10x^{1000} + 4x^{500} + 7$.

Q: Determina the interval on which of is continuous?

A: (-00,00)

 E_{g} = $f(x) = \frac{3x-5}{2x-7}$

Q: Determina the interval on which of is continuous?

A: Domain = $\left(-\frac{1}{2}, \frac{7}{2}\right) \cup \left(\frac{7}{2}, \infty\right)$ (interval notation)

on $\left\{ \times \mid \times \neq \frac{7}{2} \right\}$ (set-builder notation)

fis continuous on its domain. (Rational function)

Hence, f is continuous on $\left(-\infty, \frac{7}{2}\right) \cup \left(\frac{7}{2}, \infty\right)$

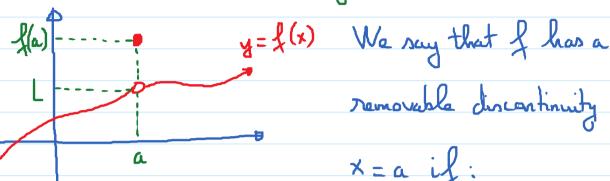
E.g. $g(x) = \sqrt{x-5}$

Q: Determine the interval on which of is continuous?

<u>A</u>: [5,7) U (7,0)

(2) Classify Different types of Discontinuity

(I) Removable Discontinuity.



removable discontinuity at

x = a i f:

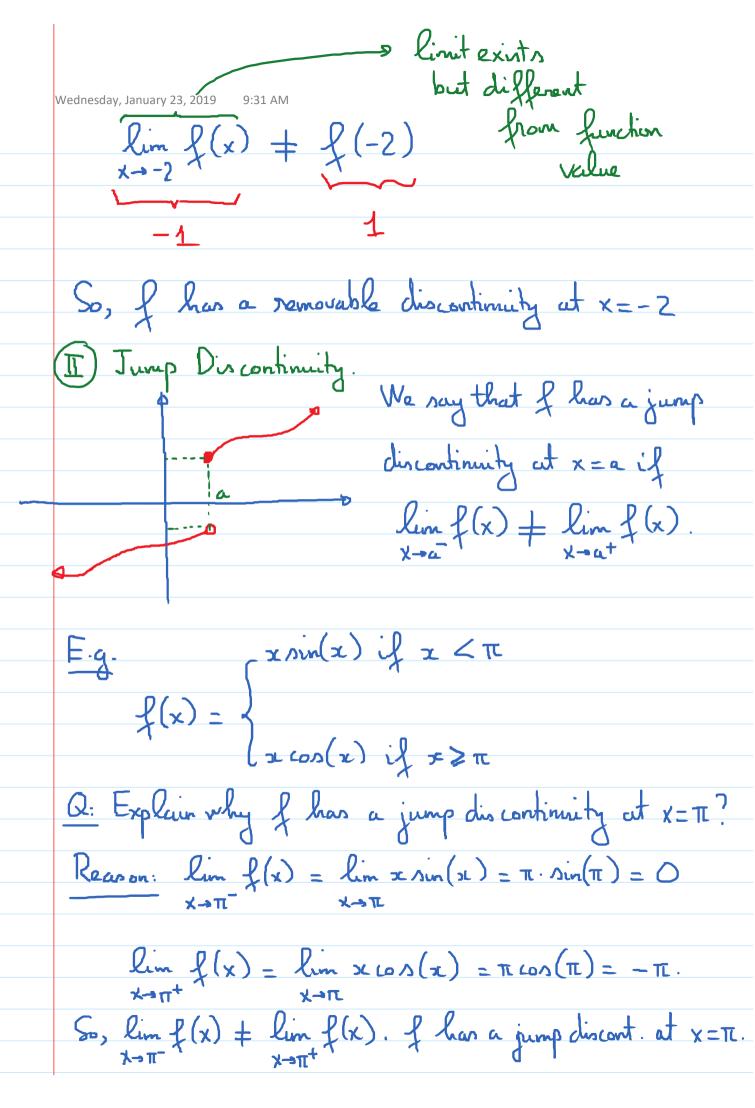
lin f(x) exists, i.e., lin f(x) = lin f(x) = L
x-a x-a+

BUT: $\lim_{x\to a} f(x) + f(a)$ $\lim_{x\to a} f(x) + 3x+2$ if $x \neq -2$ E.g. $f(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 2} & \text{if } x \neq -2 \\ 1 & \text{if } x = -2. \end{cases}$

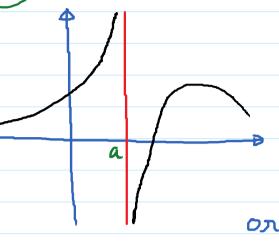
Claim: f has a removable discontinuity at x=-2.

Reason: $\lim_{X\to -2} \frac{x^2+3x+2}{x+2} = \lim_{X\to -2} \frac{(x+1)(x+2)}{x+2}$

= lim (x+1) = -1.



In finite Discontinuity.



We say that I has an infinite

discontinuity at x = a if

lin f(x) = ±∞
x→a

lin f(x) = ± 00

 $F(x) = \frac{2}{(x-3)(x-4)}$

I has infinite discontinuity at x=3 and at x=4 blc I has V.A. at there values; honce, the limit there are infinite.