4.10. Antiderivative

Monday, April 15, 2019

Definition of an antiderivative of a function.

J: function defined on an interval I

An antiderivative of & in a function F(x) such that

F'(x) = f(x) for every x in I

In short, an antiderivative of a function is a function whose derivative is equal to the given function.

E.g. Given: f(x) = x; defined on $I = (-\infty, \infty)$

Q: Find an antiderivative of f?

 $\frac{A: F(x) = \frac{x^2}{2}}{2}$

Check answer: $\frac{d}{dx}\left(\frac{x^2}{2}\right) = \frac{1}{2} \cdot 2x = x$

So, $F'(x) = f(x) \rightarrow \text{answer is correct}$

A: $F(x) = \frac{x^2}{2} + 10$.

 $F'(x) = x = f(x) \rightarrow \text{answer is correct}$

In general, any antiderivative of
$$f(x) = x$$
 will have the form $F(x) = \frac{x^2}{2} + C$; where C is a constant.

$$E_g$$
. $f(x) = x^2$, defined on $I = (-\infty, \infty)$

Find an antiderivative of f.

$$A: F(x) = \frac{x^3}{3}.$$

Chacle:
$$F'(x) = \left[\frac{x^3}{3}\right] = \frac{1}{3} \cdot \frac{1}{3} x^2 = x^2$$

In general, any antiderivative of
$$f(x) = x^2$$
 have

the form
$$F(x) = \frac{x^3}{3} + C$$
 where C is a constant.

The formula
$$F(x) = \frac{x^3}{3} + C$$
 is called the most

general antiderivative of
$$f(x) = x^2$$
 on in short,

E.g.
$$f(x) = x$$

A:
$$F(x) = \frac{2020}{2020} + C$$
, C: any constant

$$\rightarrow Q: f(x) = x^n$$

Find the most general antiderivative of f?

A: $F(x) = \frac{x^{n+1}}{n+1} + C$; C is any constant.

True only if $n \neq -1$

Mote: when n = -1; $f(x) = x^{-1} = \frac{1}{x}$.

Find the most general antiderivative of f(x)?

So, F(x) = lnx + C.; C: any constant.

Reuson: (lnx+c) = 1

Very Important notation:

Barrically, f(x)dx = F(x) + C

where F(x) is such that F'(x) = f(x) and

C'in a constant.

$$\int x dx = \frac{x^2}{2} + C$$

$$\int x^2 dx = \frac{x^3}{3} + C.$$

(Anti-power rule)

And in general:
$$\int_{x} 2^{n} dx = \frac{x^{n+1}}{n+1} + C; n \neq -1$$

Also,
$$\int \frac{1}{x} dx = \ln |x| + C$$

E.g. Find
$$\int x dx = \int x^{\frac{1}{2}+1} dx = \frac{\frac{1}{2}+1}{\frac{1}{2}+1} + C$$

Rewrite anti-ponen nule
$$= \frac{\frac{3}{2}}{\frac{3}{2}} + C = \left[\frac{2}{3}, x^{\frac{3}{2}} + C\right]$$

E.g. Find
$$\int \frac{1}{x^2} dx = \int \frac{1}{x^2} dx = \frac{x^{-2+1}}{-2+1} + C$$
Rewrite antiponen rule

$$-\frac{x^{-1}}{-1} + C = -\frac{1}{x} + C$$

Table of useful Antiderivatives

Function f(x)	Antidorivative: \f(x) dx
	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C; n \neq -1$
$f(x) = \frac{1}{x} (n = -1 \text{ case})$	$\int \frac{1}{x} dx = \ln x + C$
f(x) = sinx	Sinx dic = - conx + C
f(x) = 10 y x	$\int conx dx = ninx + C$
$f(x) = ne^2 x$	$\int sec^2 x dx = tan x + C$
f(x) = Nec(x) + tun(x)	$\int nec(x) + zun(x) dx = nec(x) + C$
$f(x) = cs^2(x)$	$\int coc^2(x)dx = -\cot(x) + C$
f(x) = usc(x) cot(x)	$\int csc(x) \cot(x) dx = -csc(x) + C$

7(2/2 050 (2)	DIC (R) AX = -LOL(X) TC
f(x) = usc(x) cot(x)	$\int csc(x) \cot(x) dx = -csc(x) + C$
	1