

Monday, March 4, 2019 8:11 AM

____, find the equation of the tangent line to
$$y = f(x)$$
 at $(a, f(a))$.

Point-slope equation of the tangent line:

$$y-f(a) = f'(a)(x-a)$$

$$-b y = f(a) + f'(a)(x-a)$$

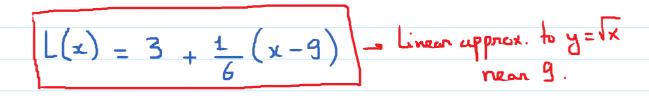
$$L(x) = f(a) + f'(a)(x-a)$$

This is the formula for the linear approximation L(2) to the function f(x) near the point a.

(a) Find the linear approx. to of near the point a = 9.

Sol:
$$L(x) = f(9) + f'(9)(x-9)$$

$$f(9) = \sqrt{9} = 3$$
. $f'(x) = \frac{1}{2\sqrt{x}} \rightarrow f'(9) = \frac{1}{6}$



Approximation =
$$L(9.1) = 3 + \frac{1}{6}(9.1 - 9)$$

= $3 + \frac{1}{6}(6.1) = 3.01667$

So V9.1 ≈ 3.01667

Ex. Use a linear approximation to estimate \$\sqrt{1001}.

(Step1: Find function
$$y = f(x)$$
. Step2: Find $L(x)$ (decide a)
Step3: Apply $L(x)$) $x^{\frac{1}{3}}$

Linear approximation:
$$L(x) = f(1000) + f'(1000)(x - 1000)$$

$$\int_{1}^{3} (3c) = \frac{1}{3} \cdot x^{-\frac{2}{3}} = \frac{1}{3 \cdot x^{2/3}}$$

$$f'(1000) = \frac{1}{3(1000)^{2/3}} = \frac{1}{300}$$

$$L(x) = 10 + \frac{1}{300}(x - 1000) \rightarrow \text{linear approx. to}$$
 $y = \sqrt{x} \text{ near } 1000$

Approximation:
$$L(1001) = 10 + \frac{1}{300}(1001 - 1000)$$

L(1001) = 10.00333...

≈ 10.00333... actual change in y The differential of a function. \$(x+0x) differential dy $\frac{dy}{dx}$ = Slope of tengent line at x = f'(x) $\frac{dy}{dy} = f'(x) \longrightarrow dy = f'(x) \cdot dx$

this is the farmula for the differential of the function of

at the point oc

dy can be used to approximate the actual change

 Δy of the function as we move from x to $x + \Delta x$.

dy ≈ Wy

Summary: dx = Δx (change in x)

 $\Delta y = f(x+\Delta x) - f(x)$ (Achial change in y)

dy = f'(x).dx (differential)

dy + Dy. (dy and Dy are different but they

are close)

E.g. Given $f(x) = x^3 + x^2 - 2x + 1$.

Find dy and Dy as oc changes from 2 to 2.05.

Sol:

 $\Delta y = f(x + \Delta x) - f(x)$

 $\left(\Delta x = dx = 0.05\right)$

 $\Delta y = f(2.05) - f(2)$

 $= ((2.05)^{3} + (2.05)^{2} - 2.05 + 1) - (2^{3} + 2^{2} - 2.2 + 1)$

Monday, March 4, 2019

8:48 AM

$$dy = f'(x) \cdot dx \qquad f'(2) = 14$$

$$x = 2; dx = 0.05, f'(x) = 3x^{2} + 2x - 2$$
So,
$$dy = f'(2) \cdot (0.05)$$

$$dy = (14) \cdot (0.05) = 0.7$$
differential

Mote: dy ≈ Dy.

0.71763