Area between curves

Key formulas

• Area A of the region bounded by y = f(x) (top curve), y = g(x) (bottom curve), and the vertical lines x = aand x = b is

$$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx.$$

• For some regions, we need to regard x as a function of y. Area of the region bounded by x = f(y) (right curve), x = g(y) (left curve), and the horizontal lines y = c and y = d is

$$A = \int_{c}^{d} \left[f(y) - g(y) \right] dy.$$

• If two curves intersect at more than two points, first find all points of intersection by setting f = g and solve for x (or y). Second, check to see which curve is above (or to the right) the other in each interval determined by these points. Then apply the formula.

Example 1: Find the area of a region between two curves

Sketch the region bounded by $y = x^2 - 1$, y = -x + 2, x = 0, x = 1 and find the area of the region.

Example 2: Curves that intersect at more than two points
Find the area of the region bounded by the graphs of $f(x) = x^3 - 3x^2 + 3x$ and $g(x) = x^2$.
Solution

Solution			
Write the solution here			

Example 3: Regard x as a function of y is preferred								
Find the area of the re	rion bounded by the graphs of $y = x - 1$ and $y^2 = 2x + 6$.							

Solution																			
Writ	e th	e so	lutio	on h	\mathbf{ere}														

Example 4: An application

The birth rate and death rate of a population is modeled by the functions $b(t) = 2000e^{0.02t}$ and $d(t) = 800e^{0.01t}$, respectively. Find the area between the two curves for on the time interval [0, 10] and explain what this area represents.

Solution								
Write the solution here								