Improper Integrals

Key formulas

Improper integrals of type 1: Integrate over an infinite interval

1. If f is a continuous function on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$

2. If f is a continuous function on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

3. If f is a continuous function on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx,$$

where c is any real number.

Improper integrals of type 2: Integrate a discontinuous function

1. If f is a continuous function on [a, b), and has an infinite discontinuity at b then

$$\int_{a}^{b} f(x)dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx.$$

2. If f is a continuous function on (a, b], and has an infinite discontinuity at a then

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx.$$

3. If f is a continuous function on [a, b], and has an infinite discontinuity at c in (a, b) then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

For both types of improper integrals: In case 1 and case 2, the improper integral **converges** if the limit exists, it **diverges** if the limit does not exist. In case 3, the improper integral on the left side **diverges** if **either** improper integral on the right side **diverges**. It **converges** if **both** improper integrals on the right side **converge**. Important result about **p-integrals**

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \begin{cases} \frac{1}{p-1}, & \text{if } p > 1\\ \text{diverges}, & \text{if } p \le 1 \end{cases}$$

Evaluate the given integrals	
ℓ^{∞} 1	
1. $\int_{1} \frac{1}{x^3} dx$ 2. $\int_{-\infty} \frac{1}{1+x^2} dx$	

	Solu	itio	n															
,	Writ	e th	e so	lutio	on h	ere												

Example 2: Typer 1 improp	er integrals that diverge	
Evaluate the given integrals		
ſ∞		c0
1. $\int_{-\infty} (x^3 - 3x^2) dx$	2.	$xe^{-4x}dx$
J – W		

	Solu	itio	n															
1	Writ	e th	e so	lutio	on h	ere												

Explain why the given integral is improper and evaluate it.	
c8 0	
1. $\int_{0} \frac{3}{\sqrt{8-x}} dx$ 2. $\int_{0} \frac{1}{\sqrt[3]{x-1}} dx$	

,	Solu	itio	n															
,	Writ	e th	e so	lutio	on h	ere												

Example 4: Ty	per 2 imp	roper inte	grals t	hat di	verge						
Explain why the	given integ	ral is impro	per and	l evalua	te it.						
c1 1						c1	1/x				
1. $\int_{a} \frac{dx}{5x-3}$					4	2.	$\frac{e^{1/w}}{x^2}dx$				

Solu	itio	n															
Writ	e th	e so	lutio	on h	\mathbf{ere}												

Example 5: An application-Volume and surface area

Consider the solid formed by revolving the infinite region bounded by the graph of $y = \frac{1}{x}$ and the x-axis over the interval $[1, \infty)$ about the x-axis. Use the result about p-integrals to show that this solid has a finite volume and an infinite surface area.

Solu	ition															
Writ	e the s	oluti	on h	ere												
		-														