Tuesday, June 18, 2019 12:27 PM

 $\frac{E_{g,2}}{a_{n}} = ?$ $\frac{n+1}{a_{n}} = (-1) \cdot \frac{1}{n^{2}}$ $a_1 = 1$; $a_2 = -\frac{1}{4}$; $a_3 = \frac{1}{9}$ $a_n = 3n + 2$ $a_1 = 5$; $a_2 = 8$; $a_3 = 11$; $a_4 = 14$ $a_n = f(n)$ and his a real # $\lim_{n \to \infty} f(n) = L$ We say that the sequence { an } converges to ! If $\lim_{n \to \infty} f(n)$ DNE, then the sequence diverges When $\lim_{n\to\infty} f(n) = \infty$, the sequence diverges to

Tuesday, June 18, 2019 12:35 PM

limit of sequence E.g. 3 $a_n = 3 + 5n^2$ (1 2 20 $3 + 5n^2$ $n \rightarrow \infty$ $h + n^2$ n→ $\frac{10n}{1+2n}$ 00 00 form n-**⊅ ∞** L'Hoptal lun 10 n-300 2 L'Hopital 1/n2 \mathcal{O} a - lim 6

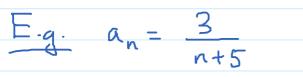
Tuesday, June 18, 2019 12:40 PM

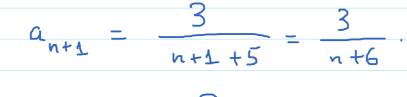
3) $a_n = n^2 e^{-n}$ $\lim_{n \to \infty} a_n = \lim_{n \to \infty} n^2 = \lim_{n \to \infty} \frac{n^2}{n^2}$ and form) - lim 2n _ lim 2 / n > 00 en / n > 00 en L'Hopstul L'Hopital $\frac{1}{1+\frac{1}{n}}$ $4) a_n =$ $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n =$ e Squeeze Theorem: $a_n \leq b_n \leq c_n$ for all n and lim a = lim cn = L n-300 n + 00 Then lum by = 1

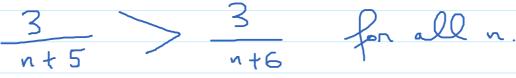
Tuesday, June 18, 2019 12:47 PM $\frac{E.g}{2} = a_n = \frac{nin(2n)}{1 + \sqrt{n}}$ $-1 \leq \sin(2n) \leq 1$ for all n $\frac{-1}{1+\sqrt{n}} \leq \frac{1}{1+\sqrt{n}} \leq \frac{1}{1+\sqrt{n}}$ an $\frac{-1}{1+\sqrt{n}} \leq a_n \leq \frac{1}{1+\sqrt{n}}$ $\lim_{n \to \infty} \left(\frac{-1}{1 + \sqrt{n}} \right) = \lim_{n \to \infty} \left(\frac{1}{1 + \sqrt{n}} \right) = 0$ So, by Squeeze Theorem, lim a = 0 Abrolute Value Theorem: If lim | an | =0, then lim an = 0 $\frac{E_{q.}}{d} \left(a_{n} - \frac{(-1)^{n+1}}{n} \right); \quad \left| a_{n} \right| - \frac{(-1)^{n+1}}{n} = \left(\frac{1}{n} \right)$

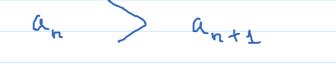
Tuesday, June 18, 2019 12.22 PM $a_n = \frac{\cos(n\pi)}{n^2}$ $a_1 = -1$, $a_2 = \frac{1}{4}$; $a_3 = -\frac{1}{4}$ $\left|a_{n}\right| = \frac{\cos(n\pi)}{n^{2}} = \frac{\cos(n\pi)}{n^{2}} = \frac{1}{n^{2}}$ $\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{1}{n^2} = 0$ By the Abs. Value Theorem, lim an E.g.6 $a_n = -3^{-n} = -\frac{1}{3^n} =$ lim an = 0 n-200 E.g.7 $a_n = (-1)^n$ $a_1 = -1; a_2 = 1; a_3 = -1; a_4 = 1$ an 4 h

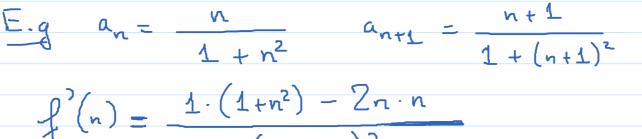
Tuesday, June 18, 2019 12:59 PM 3 $a_n = \frac{n^3}{n+1}$. $\lim_{n \to \infty} \frac{n^3}{n+1} = \infty$ E.g. 8 Monstonic Sequence: , . . 7 , Mon Decreasing sequence (Increasing) $a_n \leq a_{n+1}$ Δ . . Mon Increasing sequence (Decreasing)











$$\frac{(1+n^2)^2}{(1+n^2-2n^2)^2} = \frac{(1-n^2)^2}{(1+n^2)^2}$$

Since
$$n \ge 1$$
, $\frac{1 - n^2}{(1 + n^2)^2} \le 0$

So,
$$f'(n) \leq 0$$
. So $f(n)$ is decreasing
So, an is decreasing.