Series

Key formulas

If we add the terms of an infinite sequence $\{a_n\}$, we get an **infinite series**

$$a_1 + a_2 + \ldots + a_n + \ldots$$

The notation for an infinite series is

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$

The numbers a_1 , a_2 , etc. are called the terms of the series. The **mth partial sum** of the series, S_m , is the sum of the first *m* terms of the series and is given by

$$S_m = a_1 + a_2 + \ldots + a_m = \sum_{n=1}^m a_n$$

If the sequence of partial sums $\{S_m\}$ converges to a real number *s*, i.e., if $\lim_{m \to \infty} S_m = s$, then we say the series $\sum_{n=1}^{\infty} a_n$ converges to *s*. The number *s* is the **sum** of the series and we write

$$\sum_{n=1}^{\infty} a_n = s.$$

A geometric series is a series of the form

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots$$

Every term is obtained from the preceding term by multiplying it by the **common ratio** r (the notation $\sum_{n=0}^{\infty} ar^n$ is also used for a geometric series).

$$\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \text{diverges} & \text{if } |r| \ge 1\\ \text{converges to } \frac{a}{1-r} & \text{if } -1 < r < 1 \end{cases}$$

A telescoping series such as $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ is another useful example of infinite series.

nth term test for divergence: If the series $\sum_{n=1}^{\infty} a_n$ converges, then the limit of the sequence of terms must be 0, i.e., $\lim_{n \to \infty} a_n = 0$.

Equivalently, if the limit of the sequence of terms of a series is nonzero or does not exist, the series diverges. In other words, if $\lim_{n\to\infty} a_n \neq 0$ or if $\lim_{n\to\infty} a_n$ does not exist, then $\sum_{n=1}^{\infty} a_n$ diverges.

Note: The above test says nothing about convergence, i.e., if $\lim_{n \to \infty} a_n = 0$, we cannot conclude that $\sum_{n=1}^{\infty} a_n$ converges. Properties of infinite series: If both the series $\sum a_n$ and $\sum b_n$ converge, then

1.
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n \text{ for any constant } c$$
2.
$$\sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n \pm b_n)$$

Exa	\mathbf{mp}	le 1	: Fi	nd	par	tial	sur	ns															
															0	° 1							
Find	the	e seq	uen	ce o	f pa	rtial	sur	ns S	$_{1}, S_{2}$	$2, \cdots$	$., S_{6}$	of	the	serie	\ge	$\frac{1}{n}$	Ī						
															n=	=1							

Sol	utio	n															
Wri	te tł	ne so	lutio	on h	ere												

Exa	mpl	e 2	: G	eom	ietr	ic s	erie	s																				
Find	the	cor	nmo	n ra	tio	and	det	ermi	ne v	whet	her	the	geo	meti	ric s	eries	s conv	erges	or o	liver	ges.	Rev	vrite	usi	ng s	umr	nati	on
nota	tion.	If	the	serie	es co	onve	rges	, fin	d th	ie su	m.														Ŭ			
1	9	4	16	(54 ₋											∞_	e^n											
1.	<u></u> о –	•4+	3		9^{+}	•••									2.	$\sum_{i=1}^{n} \frac{1}{i}$	3^{n-1}											
																-1												

e e	Solu	itio	n															
T	Writ	e th	e so	lutio	on h	ere												

Example 3: Telescoping series

Find	a fo	rmu	ıla f	or tl	$ne \mathbf{n}$	\mathbf{h}	par	tial	sun	n of	$_{\mathrm{the}}$	serie	es ar	nd us	se it	to c	leter	min	le w	heth	er tl	he se	eries	\cos	verg	es o	r di	verge	es.	
If it	conv	verge	es, f	ind	the	sum	ı.																							
	∞	、 、	1												7	∞	(n)											
1.	$\sum_{n=1}^{n}$	$\frac{1}{n}$	n +	1)											2.	$\sum_{i=1}^{n} l$	$n\left(\frac{-}{r}\right)$	n + 1	ī)											

S	Solu	itio	n															
T	Writ	e th	e so	lutio	on h	ere												

Example 4: nth-term test	
$a_n = \frac{1}{2n+3}$	
1. Does the sequence $\{a_n\}$ converge? Why?	
2. Decay the gaming $\sum_{n=1}^{\infty} a_n$ compares 2. Why 2	
2. Does the series $\sum_{n=1}^{\infty} a_n$ converge: why:	

,	Solu	itio	n																					
٦	Write the solution here																							
Write the solution here																								

Example 5: Properties	of se	ries									
	∞	(3									
Find the sum of the series	\sum_{i}	$\frac{0}{n(n+1)}$	$\frac{1}{2} + (0)$	$(.9)^n$	•						
	n=1		,								

S	Solu	tio	n																
7	Vrit	e th	e so	lutio	on h	ere													

Exa	mp	le 6	: M	ake	as	series	s coi	iverg	e																
Find	all	valu	les o	f x	for	whicł	1 the	series	s cor	nverg	es.	The	n wr	ite th	e sur	n of	the	serie	s as	a fi	unct	ion	of x		
	∞													∞	,		$\sim n$								
1.	Σ	(-5)	$(5)^n x$	n									4	2.	$5\left(\frac{1}{2}\right)$	$\frac{x-2}{3}$	2)								
	n =	1												n =)	0	/								

S	Solu	itio	n															
7	Nrit	e th	e so	lutic	on h	ere												
																		 -+