
The integral test and p-series

Key formulas

If the nth term of a series is given by an = f(n) where the function f(x) is positive, continuous, and decreasing
on the interval [1,∞) then
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either both converge or both diverge.
Note: The lower bound n = 1 in the sum and the integral can be replaced by any positive integer n = N ≥ 1.
Note: The value that the improper integral converges to, in general, is NOT the sum of the series.
p-series test: The p-series
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converges for p > 1 and diverges for 0 < p ≤ 1.
Note: The lower bound n = 1 in the sum can be replaced by any positive integer n = N ≥ 1.

Example 1: Using the integral test

Explain why the integral test can be applied to the series. Then apply the test to determine whether the series

converges or diverges.
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Solution

Write the solution here
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Example 2: Using the integral test

Explain why the integral test can be applied to the series. Then apply the test to determine whether the series
converges or diverges.
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Solution

Write the solution here

Example 3: Using the integral test

Explain why the integral test cannot be applied to the series.
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Solution

Write the solution here



Example 4: Using the p-series test

Determine whether the series converges or diverges.
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Solution

Write the solution here


