The integral test and p-series

Key formulas

If the nth term of a series is given by $a_n = f(n)$ where the function f(x) is **positive**, **continuous**, and **decreasing** on the interval $[1, \infty)$ then

$$\sum_{n=1}^{\infty} a_n$$
 and $\int_1^{\infty} f(x) dx$

either both converge or both diverge.

Note: The lower bound n = 1 in the sum and the integral can be replaced by any positive integer $n = N \ge 1$. Note: The value that the improper integral converges to, in general, is NOT the sum of the series. p-series test: The *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$

converges for p > 1 and diverges for 0 .

Note: The lower bound n = 1 in the sum can be replaced by any positive integer $n = N \ge 1$.

Example 1: Using the integral test

Explain why th	e integral	test can	be a	applied	to th	e serie	s.]	Chen	apply	the	test 1	to det	termine	whethe	r the	ser	ies
converges or div	erges. $\sum_{k=1}^{\infty}$	n															
	n=1	$n^2 + 1$															

S	Solu	itio	n															
Ţ	Writ	e th	e so	lutio	on h	ere												

Example 2: Using the integral test	
Explain why the integral test can be applied to the series. Then ap	ply the test to determine whether the series
converges or diverges. $\ln 2 \ln 3 \ln 4 \ln 5 \ln 6$	
$\frac{\ln 2}{2} + \frac{\ln 3}{3} + \frac{\ln 4}{4} + \frac{\ln 5}{5} + \frac{\ln 6}{6}$	+

(Solu	itio	n															
	Writ	e th	e so	lutio	on h	ere												

Example 3: Using the integral test	
Explain why the integral test cannot be applied to the s	series.
∞ ()	∞ (
1. $\sum \frac{\cos(\pi n)}{\sqrt{n}}$	2. $\sum \left(\frac{\operatorname{sm} n}{n}\right)$

Sc	olut	tio	n															
W	rite	$e ext{ th}$	e so	lutio	on h	\mathbf{ere}												
1																		
+																		
+																		
+																		

]	Exa	mpl	e 4:	Usi	ng tl	ıe p-	seri	ies t	\mathbf{est}																	
Ι	Dete	rmin	ie wł	nethe	the	seri	es cc	onve	rges	or	divei	ges.														
		∞										Ŭ				1	1		1		1					
	1.	\sum	$\frac{1}{n^{\pi}}$											2. 1	. + -	<u>-</u> 3⁄4	$+\frac{1}{\sqrt[3]{}}$	$\frac{1}{9}$ +	$\frac{1}{\sqrt[3]{1}}$	$= + \frac{1}{6}$	$\frac{1}{\sqrt[3]{2}}$	=+5	•••			
		n=1														• -	v		v -	~	· -	~				

Solı	utio	n															
Wri	te tł	ne so	lutio	on h	ere												