The Ratio and Root Tests

Key formulas

The ratio test: Let > a, be a series. We compute
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1. If L < 1, then the series Y a,, converges absolutely.
2. If L > 1 or L = oo, then the series ) a,, diverges.

3. If L =1, then the test is inconclusive. In this case, the test fails and we cannot draw any conclusion about the
convergence or divergence of the series

The root test: Let Y a, be a series. We compute
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1. If L < 1, then the series Y a,, converges absolutely.

2. If L > 1 or L = o0, then the series »_ a,, diverges.

3. If L =1, then the test is inconclusive. In this case, the test fails and we cannot draw any conclusion about the
convergence or divergence of the series

Example 1: Using the ratio test

Determine whether the series converges absolutely or diverges.
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Write the solution here




Example 2: The ratio test fails
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Explain why the ratio test fails for the series E (—1)”%. Determine whether the series converges conditionally,
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converges absolutely or diverges.

Write the solution here

Example 3: Using the root test

Determine whether the series converges absolutely or diverges.
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Write the solution here




Example 4: Make a series converge

Find the values of  for which the series converges
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Write the solution here




