The Ratio and Root Tests

Key formulas

The ratio test: Let $\sum a_n$ be a series. We compute

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- 1. If L < 1, then the series $\sum a_n$ converges absolutely.
- 2. If L > 1 or $L = \infty$, then the series $\sum a_n$ diverges.
- 3. If L = 1, then the test is inconclusive. In this case, the test fails and we cannot draw any conclusion about the convergence or divergence of the series

The root test: Let $\sum a_n$ be a series. We compute

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}.$$

- 1. If L < 1, then the series $\sum a_n$ converges absolutely.
- 2. If L > 1 or $L = \infty$, then the series $\sum a_n$ diverges.
- 3. If L = 1, then the test is inconclusive. In this case, the test fails and we cannot draw any conclusion about the convergence or divergence of the series

Example 1: Using the ratio test	
Determine whether the series converges	s absolutely or diverges.
∞ 3	
1. $\sum (-1)^n \frac{n^2}{3n}$	2. $\sum \frac{n^n}{n!}$

Solu	itio	n															
Writ	e th	le so	lutio	on h	ere												

Exa	\mathbf{mp}	le 2	: Tł	ie ra	atic	o te	st f	ails																					
											∞		1	-															
Exp	lain	why	the	e rati	io te	est i	fails	for	the	serie	$5\sum_{i}$	(-1)	$n \frac{\mathbf{v}}{n+1}$	1.	Dete	ermi	ne w	vhet	her	the	serie	es co	onve	rges	cor	nditi	onal	ly,	
conv	erge	s ab	solu	itely	or	dive	erges				n=1																		

S	Solution																					
T	Writ	e th	e so	lutio	on h	ere																

Exa	mple 3: Using the root t	est	
Dete	rmine whether the series co	nverges absolutely or diverges.	
	∞ (a) n		
1.	$\sum \left(\frac{2n}{n+1}\right)$	2. $\sum \frac{(-2)^n}{n^n}$	
	$\overline{n=1}$ $(n+1)$		

Solı	itio	n															
Writ	e th	e so	lutio	on h	\mathbf{ere}												

Example 4: Make a series converge		
Find the values of x for which the series	s converges	
× •		
1. $\sum \frac{x^n}{n!}$	2. $\sum \frac{n^2 x^n}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$	
n=0		

Solution												
Write the solution here												