Power Series

Key formulas

A power series centered at α with coefficients c_0, c_1, c_2, \ldots is an infinite series of the form

$$\sum_{n=0}^{\infty} c_n (x-\alpha)^n = c_0 + c_1 (x-\alpha) + c_2 (x-\alpha)^2 + \dots + c_n (x-\alpha)^n + \dots$$

If the center $\alpha = 0$, then the power series centered at 0 has the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

For a given power series $\sum_{n=0}^{\infty} c_n (x - \alpha)^n$, there are exactly three possibilities:

- 1. The series converges only at $x = \alpha$.
- 2. The series converges absolutely for all real number x.
- 3. The series converges for x in an interval centered at α . More precisely, there is a number R > 0 such that the series converges absolutely for all x in the interval $(\alpha R, \alpha + R)$ and diverges for x in $(-\infty, \alpha R) \cup (\alpha + R, \infty)$.

The number R in case 3 is called the **radius of convergence** of the series. (The radius of convergence is 0 in case 1 and ∞ in case 2.)

The interval of convergence of a power series is the interval that consists of all values of x for which the series converges. In case 1, the interval of convergence is a single point $\{\alpha\}$. In case 2, the interval of convergence is $(-\infty, \infty)$. In case 3, the interval of convergence includes the interval $(\alpha - R, \alpha + R)$. However, the above result does not say anything about the endpoints $x = \alpha + R$ and $x = \alpha - R$. Anything can happen at these 2 endpoints in this case and hence they must be tested separately for convergence or divergence. Thus, in case 3 there are 4 possibilities for the interval of convergence:

$$(\alpha - R, \alpha + R);$$
 $[\alpha - R, \alpha + R);$ $(\alpha - R, \alpha + R];$ $[\alpha - R, \alpha + R].$

If a power series $\sum c_n (x - \alpha)^n$ has radius of convergence R > 0, then for x in the interval of convergence of the series, we can define a function

$$f(x) = c_0 + c_1(x - \alpha) + c_2(x - \alpha)^2 + c_3(x - \alpha)^3 + \dots = \sum_{n=0}^{\infty} c_n(x - \alpha)^n.$$

The function f is continuous and differentiable on the interval of convergence and we can find its derivative and its antiderivative by **term-by-term** differentiation and integration. More specifically,

$$f'(x) = c_1 + 2c_2(x - \alpha) + 3c_3(x - \alpha)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x - \alpha)^{n-1},$$

and

$$\int f(x)dx = C + c_0(x-\alpha) + c_1\frac{(x-\alpha)^2}{2} + c_2\frac{(x-\alpha)^3}{3} + \dots = C + \sum_{n=0}^{\infty} c_n\frac{(x-\alpha)^{n+1}}{n+1}$$

The radii of convergence of f(x), f'(x), and $\int f(x)dx$ are the same. But the intervals of convergence of f(x), f'(x), and $\int f(x)dx$ might be different as a result of the behavior at the endpoints.

Example 1: Radius of convergence	ce equals 0	
<u>∞</u>		
	etermine the formula for the term a_n of the series and the coefficient c_n of the	;
series. What is the center of the series		
Find the values of x for which the ser	ries converges. What is the radius of convergence of the series?	

9	Solu	itioi	n															
1	Writ	e th	e so	lutio	on h	ere												

Example 2: Radius	s of convergence equals ∞
	∞ $(-1)^n$
Given the power serie	$4 = 2^{2n} (n!)^2$
	he center of the series?
Find the values of x f	for which the series converges. What is the radius of convergence of the series?

S	olu	itio	n															
v	Vrit	e th	e so	lutio	on h	ere												

Example 3: Radius of convergence is a	s a finite, positive number
$-\infty$ $(-1)^n$	
2n+1	7. Determine the formula for the term a_n of the series and the coefficient c_n
of the series. What is the center of the series	
Find the values of x for which the series co	converges. What is the radius of convergence of the series?

S	Solu	itio	n															
T	Writ	e th	e so	lutio	on h	ere												

Example 4: Interval of convergence

Find the interval of converg	ence of the given series. Make sur	re to test the endpoints.
∞ (α)n		∞
1. $\sum \frac{(x-2)^n}{n^2+1}$	2.	$\sum \frac{n! x^n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}$
		n=2 1 0 0 (2 <i>n</i> 1)

Sol	utio	n															
Wri	te th	e so	lutio	on h	\mathbf{ere}												

Exar	mple 5	5: Te	rm-	by-	\mathbf{ter}	m d	iffe	\mathbf{ren}	tiat	ion	ano	d in	teg	rati	on										
Let																									
					f((x) =	$=\sum_{n=1}^{\infty}$	$\overline{x^r}$	1 -, fo	or x	in t	he i	nter	val	of co	onve	erger	nce o	of th	e se	ries.				
							n =	n_1																	
1.	Find t	the se	\mathbf{ries}	for	f'(z)	x) ai	nd J	$\int f(z)$	x)dx	c .															
2.	Find t	the in	iterv	val o	f co	nver	gen	ce o	f $f($	x),	f'(x) an	ıd ∫	f(x)dx.										

S	Solu	itio	n															
V	<i>N</i> rit	e th	e so	lutio	on h	ere												