Area of a surface of revolution

Key formulas

The area S of the surface of revolution formed by revolving a smooth curve y = f(x), $a \le x \le b$ about a horizontal or vertical axis is

$$S = 2\pi \int_{a}^{b} r(x)ds = 2\pi \int_{a}^{b} r(x)\sqrt{1 + [f'(x)]^{2}}dx$$

where r(x) is the distance between the graph of f and the axis of revolution. We have: r(x) = f(x) if we revolve f about the x-axis and r(x) = x if we revolve f about the y-axis. The area S of the surface of revolution formed by revolving a smooth curve x = g(y), $c \le y \le d$ about a horizontal or vertical axis is

$$S = 2\pi \int_{c}^{d} r(y)ds = 2\pi \int_{c}^{d} r(y)\sqrt{1 + [g'(y)]^{2}}dy$$

where r(y) is the distance between the graph of g and the axis of revolution. Hence, r(y) = g(y) if we revolve f about the y-axis and r(y) = y if we revolve g about the x-axis.

Example 1: Find area of a surface of revolution

Find the area of the surface formed by revolving the curve $y = \sqrt{4 - x^2}$, $-1 \le x \le 1$ about the x-axis.

Example 2: Find area of a surface of revolution																												
	Exa	mpl	e 2:	: Fi	nd	area	a of	a s	urfa	ace	of r	evo	luti	on														
	Find	the	are	a of	the	sur	face	fori	med	bv i	revo	lvin	g th	e cu	rve	u =	9 –	x^2 .	0 <	$x \leq$	(3 a	bou	t th	e <i>11-</i>	axis			
		0110		a 01	0110	our	1000	1011	ino a	~, .			5 011	0 00	110	9	Ŭ	~ ,	~ _				0 011	09				
Solution																												
	Writ	e the	- 50	lutic	on h	ere																						
				luon	,11 11	010																				 		

Example 3: Find area of a surface of revolution

Set up an integral (no need to evaluate) to find the area of the surface formed by revolving the curve $x = \ln(2y+1)$, $0 \le y \le 1$ about (a) the x-axis and (b) the y-axis.

Solution																							
٦	Writ	e th	e so	lutio	on h	ere																	