Representation of functions by power series

Key formulas

Basic geometric power series centered at 0:
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on the interval (—1,1) is represented by the series Z %,
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We say that the function f(x) =
-z
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on the interval (—1,1) is represented by the series Z(—l)"m”.
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Similarly, the function f(x) = o2

If we know the power series for the functions f(z) and g(x), say f(x Z cna” and g(x Z d,x™, we can obtain
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the series for the functions f(x) & g(x), f(kx) (k is a constant), f(zP) (p is a constant) by the following operations
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Note that interval of convergence of the series for f(x) & g(x) is the intersection of that of the series for f and for g.
We can find the interval of convergence of the series for f(kx) and f(a?) by finding the values of = for which kz and
2P belongs to the interval of convergence of the series for f.

We can also obtain the series for f'(z) and [ f(x)dz by differentiating and integrating the series for f(x).
Important series to know from thls lecture
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Example 1: Functions represented by geometric power series

Find a geometric power series centered at « for the given function. Determine the interval of convergence.

Write the solution here

Example 2: Find power series using basic operations
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Use the series for f(z) = :

given function. Determine the interval of convergence.

1
and g(z) = Tr and series operations to find the power series centered at 0 for the
x x

1 — 422

Write the solution here
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Example 3: Find power series using basic operations

Find the partial fraction decomposition of f(z) = — and use it to find the power series for f centered at 0.
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Determine the interval of convergence.

Write the solution here

Example 4: Find power series by differentiation

1
to find a power series centered at 0 for g(z) = —.
T (1-x)?

(Note that g(z) = f'(z).) Determine the interval of convergence of the series.

1. Use the power series centered at 0 for f(z) = 1

2. Use the series from Part 1 to obtain the series centered at 0 for h(x) = 5- Use this result to find the

(1—x)
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3. Find a power series centered at 0 for u(x) = ————=. Use this result to find the sum of the series Z
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4. Use the previous results to find the sum of the series Z o
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Write the solution here




Example 5: Find power series by integration
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z) = [ f(z)dz

2. Perfomr a change of index to show that In(1 4 z) =

)=
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1. Use the series centered at 0 for f(z) = to find a series centered at 0 for g(z) =

In(1 + z) (Note that

Write the solution here




Example 6: Find power series by integration

1
1. Use the series centered at 0 for f(z) = T
T

1
Then use the series for g(z) to find a series centered at 0 for h(z) = arctan(z). (Note that h(z) = [ g(z)dz.)
Determine the interval of convergence of each series.
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2. Use the result of the previous part to show that 7 = 2v/3 —_—
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Write the solution here




