Calculus with Parametric Curves

Key formulas

Parametric equations are equations that define x and y as functions of a third variable t (called the **parameter**):

$$x = f(t), y = g(t).$$

Plugging a specific value of t into the equations for x and y determine a point (x, y) = (f(t), g(t)) in the xy-plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve C, called a **parametric curve**. We can **eliminate the parameter** to find a rectangular equation that represents the graph of a set of parametric equations.

Differentiation: Given a set of parametric equations x = f(t), y = g(t), we have

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}, \text{ provided } \frac{dx}{dt} \neq 0$$
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx}\right] = \frac{\frac{d}{dt} \left[\frac{dy}{dx}\right]}{\frac{dx}{dt}}.$$

The first derivative helps us find slopes of tangent lines to a parametric curve. The second derivative helps us determine concavity of the curve.

Arc Length: If a smooth parametric curve $C : x = x(t), y = y(t), a \le t \le b$ does not intersect itself on the interval $a \le t \le b$ (except possibly at the endpoints), the the arc length of C on the interval is given by

$$L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2} dt$$

The area S of the surface of revolution formed by rotating C about the x-axis (assuming $g(t) \ge 0$) is

$$S = 2\pi \int_{a}^{b} g(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt,$$

and about the y-axis (assuming $f(t) \ge 0$) is

$$S = 2\pi \int_{a}^{b} f(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

Example 1: Sketch a curve described by parametric equations. Indicate the direction in which the curve is traced as the parameter increases and find the rectangular equation by eliminating the parameter. $x = \sqrt{t}, y = t - 5$, where $t \ge 0$.

Solu	itio	n															
Writ	e th	e so	lutio	on h	ere												

Example 2: Using trigonon	metry to eliminate the parameter	
Eliminate the parameter to fin	nd the rectangular equation for the curve. Identify the curve.	
1. $x = \cos(t), y = \sin(t)$ whe	here $0 \le t \le 2\pi$. 2. $x = -3 + 4\cos(t), y = 2 + 5\sin(t)$ where $0 \le t \le 2\pi$	π.

Solu	itio	n															
Writ	e th	e so	lutio	on h	ere												

Example 3: Finding a derivative	
Find $\frac{dy}{dy}$ for the curve given by	
1. $x = \sqrt[3]{t}, y = 4 - t$	2. $x = 2e^{\theta}, y = e^{-\theta/2}$

S	Solu	itio	n															
T	Writ	e th	e so	lutio	on h	\mathbf{ere}												

Example 4: Find slope and concavity

Fin	d é	dy	and	d^2y	anc	1 fir	d tł	ne sl	one	cor	lcav	itv	and	eau	atio	n of	the	tan	rent	lin	e of	the	cur	ve at	t the	o oir	zen -	poin	t	
1 111	iu c	dx [•]	ana	dx^2	an		ia oi	10 51	opc,	001	icav.	10y,	ana	cqu	a010	11 01	unc	uan	gem	, 1111	5 01	0110	cui	ve a	0 0110	- 6 ¹	ven j	pom	0.	
-	1. 3	x =	= t ²	+51	; + 4	l, y	=4t	t, t =	= 0							2. x	c = b	$\theta - s$	$\sin heta$, y =	= 1 -	– co	$s\theta$,	$\theta =$	π					

	Solu	itio	n															
,	Writ	e th	e so	lutio	on h	ere												

Example 5: Find arc length	
Find the arc length of the curve	the given interval
	$x = \arcsin(t), y = \ln \sqrt{1 - t^2}, 0 \le t \le 1.$

S	Solu	itio	n															
7	<i>N</i> rit	e th	e so	lutio	on h	ere												

Example 6: Find surface area

i	ind '	the a	area	of t	he s	urfa	ce g	ene	rate	d bv	rev	olvi	ng t	he c	urve	e <i>x</i> =	= a c	\cos^3	θ. u	= a	$i \sin^{4}$	$^{3}\theta$.	0 <	$\theta <$	π a	bout	$th\epsilon$	e x-a	xis.	
							C	,					-0 -						., 9			~,	_	-						

S	Solu	itio	n															
T	Nrit	e th	e so	lutio	on h	ere												