Area and Arc Length in Polar Coordinates

Key formulas

Area: The area of the region bounded by the polar curve $r = f(\theta)$ and the rays $\theta = a$ and $\theta = b$ is given by

$$A = \frac{1}{2} \int_{a}^{b} r^{2} d\theta = \frac{1}{2} \int_{a}^{b} \left[f(\theta) \right]^{2} d\theta$$

The area of the region bounded by the polar curves $r = f(\theta)$, $r = g(\theta)$, the rays $\theta = a$ and $\theta = b$ where $f(\theta) \ge g(\theta) \ge 0$ is given by

$$A = \frac{1}{2} \int_{a}^{b} \left([f(\theta)]^{2} - [g(\theta)]^{2} \right) d\theta$$

Arc Length: The length of a curve with polar equation $r = f(\theta)$, $a \le \theta \le b$ is given by

$$L = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta.$$

Example 1: Find area

Find the area bounded by the curve $r = 3\cos(3\theta)$ and the rays $\theta = -\pi/6$ and $\theta = \pi/6$

F	Example 2: Find area																												
F	'ind	the	are	a of	the	reg	ion	$_{\rm that}$	lies	insi	ide t	the o	curv	e r :	= 3	$\sin heta$	and	l ou	tside	e the	e cu	rve '	r =	1 +	\sin	θ.			
						Ŭ																							

	Solu	itio	n															
,	Writ	e th	e so	lutio	on h	ere												

Example 3: Find arc length of a polar curve														
Find the length of the polar curve over the given interval														
1. $r = a, 0 \le \theta \le 2\pi$. 2. $r = 1 + \cos \theta, 0 \le \theta \le 2\pi$.														

	Solu	itio	n															
1	Writ	e th	e so	lutio	on h	\mathbf{ere}												