Due at the beginning of class on the day of Test 2

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Problem 1: List the terms of a sequence																											
List	the	first	five	e ter	$^{\mathrm{ms}}$	of tl	he g	iven	seq	ueno	e																
			31														($1 n_{x}$									
1	a_n	$=\frac{1}{n}$	$\frac{5n}{1+4}$	Ī											3. <i>c</i>	$u_n =$	$\frac{(-)}{n!}$	$\frac{1}{1}$ + 1	-								
			0	nπ \															1	9							
2	a_n	= s	in ($\overline{2}$											4. ι	$i_1 =$	6, a	n+1	$=\overline{3}$	a_n^2	tor <i>i</i>	$i \geq 1$	1.				

Problem 2: Find the nth term of a sequence																										
]	Find	the	for	mula	a for	\cdot the	\mathbf{nt}	h te	rm (of tł	ne se	que	nce													
		1	4	9	16	25										1	2		3	Δ						
	1.	$\frac{1}{2}$,	$-\frac{1}{3}$,	$\frac{3}{4}, -$	$-\frac{10}{5}$	$,\frac{20}{6}$									2.	$\frac{1}{2\cdot 3}$	$\frac{2}{3 \cdot 4}$	$\overline{4}^{}, \overline{4}$	$\frac{5}{\cdot 5}$	$\frac{1}{5 \cdot 6}$						

Problem 3: Find the limit of a sequence														
Find the limit of the sequence														
1. $a_n = 6 + \frac{2}{n^2}$ 3. $a_n = \cos\left(\frac{2}{n}\right)$														
	n													
2. $a_n = \frac{2n}{\sqrt{n^2 + 1}}$ 4. $a_n = \left(1 + \frac{2}{n}\right)$														

Problem 4: Squeeze theorem																									
U٤	se t	the	Squ	eeze	theor	rem	to f	ind	the	e lin	nit o	f th	e sec	quer	ice:										
			-	in(r)													200							
	1.	a_n	= -	$\frac{m(n)}{n}$	<u>)</u>											2. a_n	=	$\frac{\cos^{-}(2n)}{2n}$	<u>n)</u>						

Problem 5: Divergent sequences														
Explain why the seque	nce diverges													
(n + 1)!	107													
1. $a_n = \frac{(n+1)!}{n!}$	3. $a_n = 1 + \frac{10}{9^n}$													
$(n\pi)$														
2. $a_n = \sin\left(\frac{1}{2}\right)$	$4. \ a_n = \frac{1}{2^n}$													

]	Problem 6: Monotonic sequence																								
I	Expl	ain	why	the	sec	uen	ce is	mo	not	onic															
				1															1						
	1.	a_n	$=\frac{1}{2}$	$\frac{1}{n+1}$	3											2. a	$v_n =$	n +	$\frac{1}{n}$						